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ARTICLES

Geometry, Voting, and Paradoxes

DONALD G. SAARI

Northwestern University
Evanston, IL 60208-2730

FABRICE VALOGNES
CREME, Université de Caen

Caen

France

1. Problems

What could be easier than “voting?” After all, to vote we just count how many people
favor each candidate. What can go wrong with something so elementary as this?

Actually, a lot. As mathematicians and others have shown over the last two
centuries, once there are at least three candidates—not an atypical situation—the
winner need not be whom the voters really want. Such bad outcomes may occur not
only because some voters continue to vote long after death; bad outcomes can also be
caused by hidden mathematical peculiarities.

We illustrate with an example from [6], where fifteen people select a common
beverage from among M (Milk), B (Beer), and W (Wine). If “ > ” means “is preferred
to” and if the voters” preferences are as follows:

Number Preference
6 M>W>B
5 B>W>M (@)
4 W>B>M

then the plurality outcome (where each person votes for his or her favorite beverage)
is M > B > W with the 6:5:4 tally. Apparently, Milk is the beverage of choice.

Before ordering a keg of Milk, let’s pause. Is Milk truly the voters’ beverage of
choice? If so, we would expect voters to prefer Milk to Beer. But as the next table
shows, these voters actually prefer Beer to Milk:

Number Preferences Milk Beer
6 M>W>B 6 0
5 B>W>M 0 5
4 W>B>M 0 4
Total 6 9

Similarly, 9 voters prefer Wine to Milk and 10 prefer Wine to Beer. This creates a
contradiction and potential controversy among the party goers, because these pairwise
comparisons suggest that the voters really prefer W > B > M, the ranking opposite to
the plurality outcome. What went wrong?

243
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Mathematicians This type of problem, coupled with the obvious importance of
elections, motivated several eighteenth century mathematicians to investigate the
mathematical peculiarities of elections. The mathematician J. C. de Borda was
probably the first to consider these issues from an academic perspective when, in
1770, he questioned whether the French Academy of Science was electing to
membership whom they really wanted. His concern, as illustrated by the beverage
example, is that the “winner” of the widely used plurality vote can be the candidate
the voters view as “inferior.”

Borda [1] devised an alternative procedure, now called the Borda Count, which
assigns 2, 1, and 0 points, respectively, to a voter’s top, middle, and bottom-ranked
candidate; candidates are then ranked according to the sum of assigned points. To see
that this method can change the outcome, consider the Borda Count tally for the
beverage example:

Number Preferences Milk Beer Wine
6 M>W>B 6 X2 0 6X1
5 B>W>M 0 5% 2 5%1 6)
4 W>B>M 0 4X1 4X2
Total 12 14 19

This produces the W > B >M outcome, which agrees with the pairwise election
rankings.

The Borda Count appears to be the “correct” voting procedure—at least for this
example. But what happens in general? Are there examples of sets of voters’
preferences, called profiles, for which the Borda Count does poorly? Why not use
other weights, such as (6,5,0) or (4,1,0), instead of Borda’s choice of (2,1,0)?
Tallying methods that assign a specified number of points to a voter’s first, second,
and third ranked candidate are called positional voting methods. When normalized to
assign a single point to a voter’s top-ranked candidate, the point assignment defines a
voting vector w, = (1, A,0), 0 < A < 1. For instance, the normalized forms of (6,5,0)
and the Borda Count are, respectively, w%=(%,%,0) and w%=(1,é,0). Because
w, =(1,1,0) effectively requires a voter to vote against his or her bottom-ranked
candidate, it is called the antiplurality method.

The w, normalization makes it clear that there is a continuum of tallying methods
where each is characterized by the weight (the A-value) placed on a voter’s second-
ranked candidate. Faced with all these possibilities, it was only natural for Borda’s
mathematical colleagues, such as Laplace, Condorcet, and others, to question which
w, method is optimal in the sense that its outcomes best reflect the views of the
voters. The debate they started continues today.

Condorcet Marie-Jean-Antoine-Nicolas de Caritat Condorcet, the French mathe-
matician, philosopher, and politician, added to the controversy in the 1780’s by
arguing that, instead of using a w, method, the outcomes should be decided strictly in
terms of the pairwise vote. The Condorcet winner is the candidate who beats all other
candidates in pairwise elections. With the preferences of table (1), Wine, which wins a
majority vote over each of the other beverages, is the Condorcet winner. Milk is the
Condorcet loser.
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Until recently the Condorcet winner was almost universally accepted as the ultimate
choice. (See [6, 7, 8] for arguments questioning this concept.) But, it has problems. To
illustrate just one difficulty, suppose a mathematics department uses pairwise voting to
choose a calculus book from among the choices { A, B, C}. A natural way to select the
book is by elimination, where after comparing two choices, say { A, B}, the winner is
compared with the remaining choice, C. Suppose the views of the department
members are

Number Preferences
5 A>B>C 3)
5 B>~C*>A
5 C>A>B

As the following table shows, A wins the initial {A, B} comparison only to be
beaten by C. In both elections the winner wins with a landslide two-thirds of the vote,
so it seems safe to declare that the departmental ranking is the decisive C > A > B.

Number Preference A B A C
5 A>B>C 5 0 5 0

5 B>~C>A 0 5 5 0
5 C>A>B 5 0 0 5
Totals 10 5 5 10

Although the outcome appears to be unquestionable, let’s question it. We already
know that C beats A and A beats B, so it remains to determine whether “top-ranked”
C beats “bottom-ranked” B. We might expect no surprises, but there is one: B beats
C by the same two-thirds landslide vote. In other words, this profile defines the cyclic
election outcomes

A > B, B>C, C>A,

whereby whichever candidate is voted upon last, wins—decisively. In particular, there
is no Condorcet winner or loser.

Condorcet understood that cycles could arise from pairwise voting; he demon-
strated this behavior by introducing the example of table (3). Such an example is now
known as a Condorcet profile.

Cycles, then, make it impossible to select an “optimal” candidate. (For a compan-
ion discussion of the problems of cycles, see [9].) But elections are intended to decide,
so competing approaches have been devised to avoid stalemates. For instance, A.
Copeland, a mathematician from the University of Michigan, developed a method
which is similar to how hockey teams are ranked. A competing procedure, which
involves counting the number of transpositions needed to convert one ranking into
another, was devised by the mathematician J. Kemeny, from Dartmouth. (For a
geometric analysis of both approaches, see [10, 11].)

Complexity and geometry Which method is best? Although this issue appears
straightforward, progress has been seriously hindered by the complexity of the
combinatorics. A traditional way to compare procedures is to construct profiles that
show how one method has a failing not suffered by another. But to construct
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examples, we need to determine how many voters must be of each type so that the
resulting election outcomes capture the desired phenomenon.

To illustrate the complexity of the combinatorics, we offer some challenges. For
instance, can the Condorcet and Borda winners differ? If so, find an illustrating
profile. The beverage example proves that different positional methods create differ-
ent election outcomes. Is there a general description explaining how election results
change with changes in the w, methods? When using different w, voting vectors to
tally ballots in the profile of table (1), either Wine, Milk, or both always emerges as
the top choice (see [6]). Are there voters’ profiles where each candidate is the
“winner” for an appropriate w,? Are the supporting examples isolated or robust? Can
we characterize all possible examples? What is the minimum number of voters
needed to create each election oddity?

In recent years, progress has been made on these concerns by replacing the
traditional combinatoric method with a geometric perspective. A summary of this
“geometry of voting” approach for three candidates is in the textbook [6], while
progress for any number of candidates (obtained by use of symmetry groups, etc.) is
reported in [7,8]. In this essay we demonstrate how geometry dramatically reduces
these previously complicated issues into forms simple enough to be presented to
students who can graph elementary algebraic equations.

2. Voter Types

A voter’s “type” is defined by how the voter strictly ranks the candidates {A, B, C}.
For convenience, denote these types by the following numbers:

Type Preference Type Preference
A>=B>C 4 C>B>A )
A>C>B 5 B>C>A
C>A>B 6 B>A>C

These types are reflected in the geometry of the equilateral triangle of Ficure 1,
where each candidate is identified with a vertex. Each point in the triangle is assigned
an ordinal ranking of the candidates according to how close the point is to each vertex

C
3 4
1 6
A B
FIGURE 1

The representation triangle and ranking regions.
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where, as in love, “closer is better.” Points on the vertical line, for instance, are
equidistant from A and B, so all of them are indifferent between these options; this
is denoted by A ~ B. Similarly, all points in the triangular sector “1” are closest to A,
next closest to B, and farthest from C, and so define the A > B > C ranking.
Considerable insight and unexpected conclusions already arise when the voters’
beliefs are restricted to only three specified preference types. This is what we discuss

3
Fortunately, as shown in Section 5, symmetry arguments reduce the number to three.

here. But selecting three of six voter types creates (6) = 20 situations to examine.

3. Condorcet Examples

The mystery of the pairwise voting cycles justifies starting with the setting where
voters’ preferences come from the three types involved in the Condorcet profile of
table (3). This setting is captured in Ficure 2a, where the three preference types
define a symmetric “pinwheel” configuration. (This “Z, orbit” symmetry causes the
cycles.)

\ B>C |
AN 1A>C
A I
A
\ !
N |
N X
A ; f_; ——————————— N Cyclic
A T
N I rankings
A
N I
N
3 1
B N
a. Admitted types b. Triangle T, *
FIGURE 2

Condorcet example setting.

If n; is the number of voters of type j, then the total number of voters is
n, +ny + ny =n. Instead of dealing with integers, we divide by n, so that x =n,/n,
y =nyz/n, and z =ny/n represent the fractions of all voters that are of each type. In

the textbook example, for instance, x =y =z = %
The constraint x +y +z =1, or z =1 — (x +y), allows us to represent all possible

profiles as the (rational) points of the triangle
T,={(x,y)|lx,y=0,x+y <1}

of Ficure 2b. (The origin is at the lower left corner.) For a point (x, y) € T,, the
fraction of all voters with type 1 and 5 preferences are given, respectively, by the «x
and y values; the fraction of all voters with a type 3 preference is 1 —x —y.

Pairwise outcomes One hindrance to our understanding of election behavior is the
difficulty of associating profiles with their election outcomes. With geometry, how-
ever, this reduces to graphing elementary algebraic equations. In an {A, B} election,
for instance, it follows from Ficure 2a that only a type 5 voter votes for B; all other
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voters are on the A side of the A ~ B line, so they vote for A. Therefore, B beats A
ifand only if y >x +z=x+ (1 —x —y), orif y > 3. The T, boundary for this region
is the horizontal dashed line of Ficure 2b.

The analysis for the remaining two pairs is similar. For an { A, C} election, it follows
from Ficure 2a that only type 1 voters prefer A>C, so A beats C if and only if
x> 3; the boundary is the vertical dashed line of Ficure 2b. Likewise thh {B,C}:
candidate C wins if and only if z=1—(x+y)> 3, or if (x+y)<3; the T,
boundary is the slanted dashed line in Ficure 2b.

As it is easy to determine which pairwise outcomes occur on each side of each
dashed T, boundary line, we know which election rankings are associated with each of
the four resulting regions of profiles. For instance, the region to the extreme right,
with T vertex (1,0), is on the A > B, A > C, B > C sides of the boundary lines, so all
of these profiles define the type 1 ranking A > B > C. Similarly, two of the other
regions identify all profiles resulting in type 3 or type 5 pairwise outcomes. Our real
interest is in the remaining small triangle in the center, which identifies all profiles
that cause cyclic pairwise outcomes.

To illustrate how to use this geometry, suppose we want to determine the minimum
number of voters required to construct examples for any of the admitted outcomes.
To do so, notice that n, the total number of voters, is a common denominator for x
and y. The answer, then, just involves finding in each region the points (x, y) with
the smallest common denominator.

As all points (x, y) with common denominator 2 are either vertices of T, or vertices
of the small triangle that causes cyclic outcomes, all two-voter examples have either
unanimity outcomes, or non-transitive rankings involving tie votes. To illustrate, point
(3,0) defines the rankings A ~C, C ~ B, even though A > B. (So, peculiar election
outcomes already arise with only two voters.) With three voters, (3, 3) is in the center
of the cyclic region. (Point (3, 3) corresponds to modifying table (3) to have only one
voter of each type.) Similar arguments show that points on the boundary lines require
four voters. Therefore, with no more than four voters, we can create examples of all
admitted pairwise rankings.

One of the many oddities of voting theory is how conclusions can depend upon
whether the number of voters is odd or even. The geometry shows that this peculiarity
is caused by how rational points are distributed within a region, depending on the
parity of the smallest common denominator. We illustrate by raising another question:
Can cycles occur if only one voter in a large population has type 3 preferences? With
n voters, this condition requires z=1/n, so a requlred (x, y) point must satisfy
x+ty= 1 —1/n and be in the cyclic region near (3, 3). If n is even, the only choices
of (%5:2,3) or (3, %) are not admissible because they are boundary points. Thus,
this particular behavior occurs if and only if n is odd and x = —1

Probabilities There is a large literature in which complicated techniques are used
to compute the probabilities of various election outcomes. (See, for instance, the
excellent bibliography [4]) With geometry, however, it is easy to compute the
likelihood of each outcome. For instance, if each point (i.e., each profile) in T, is
equally likely, then the common areas of the four regions prove that each outcome
occurs with probability ;. Similarly, say that a profile probability is centrally dis-
tributed if the likelihood of profile (py, p,, p;) is the same as (p,, p;, p3), or of any
of the four other ways these p; values can be permuted. An example is the
multinomial distribution. This symmetry over voter types means that with a centrally
distributed profile probability, all three transitive outcomes are equally likely. By
appealing to the central limit theorem, we identify a wide class of settings where the
likelihood of cyclic rankings dominates.
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These ; probability values represent limits as the number of voters becomes very
large. To explain with n voters, notice that the number of fractions x and y with
common denominator n that satisfy x +¢ =0 (so z = 1) is the number of admissible
numerators for «; it is 1. Similarly, if n —j of the n voters have type 3 beliefs (so
z=1—j/n), the number of points (x,y) satisfying x+y=j/n is j+ 1. The
standard identity

k
‘¥j=(k42-1)=k(k2+1) )
j=1

ensures that there are (";2) rational points in T, with common denominator n.

n+2

Therefore, n voters create ( .

) different profiles among these three beliefs.

An important observation (illustrated with n = 2, 3) is that these (" "; 2) points need

not be equally distributed among the four regions. So, to compute the number of
points (or profiles) in each region, notice that the points in the small triangle defining
cyclic outcomes are those (x,y) with x <1/2, y<1/2, and x+y > 3. For odd

values of n, j different (x, ) points in the cyclic region satisfy x +y =1 — -jﬁ =1-z,

j=2,...,(n—1)/2. Using equation (5), this total of _(LI)E(M points means that
the fraction of the T, points in the cyclic region is

(n=D(n+1) 1 3
4(n+1)(n+2) _Z(l_m);

this tends to § as n — . Similarly, for even values of n we have the smaller

il erhery) T

The following theorem results from similarly easy computations.

THEOREM 1. When voters are restricted to types 1, 3, and 5, the four possible
strict pairwise outcomes include these three types and the cyclic rankings
A > B> C>A. If profile points in T, are assumed to be centrally distributed, then
the three transitive rankings are equally likely. In the case of n voters, and we assume
that all points in T, are equally likely, the probability of strict rankings with cyclic

outcomes is i(l—;ﬁ—Q if n is odd and %(1—% if n is even. The

likelihood of a strict transitive ranking is i(l + ;%) if n is odd and i(l - ;i—l) ifn
is even.

While the ; probabilities are rapidly approached as the number of voters increases,
notice the strikingly different values that occur for small n-values. For instance, with
n = 3, instead of approximately § of the points in the cyclic region, there are only 75
of them. For n = 4, this probability drops to zero, then rebounds to Lforn=5 only
to drop to % for n=6. Again, this oddity involving the parity of n reflects the

distribution of rational points in T;.

Positional outcomes The geometry also identifies all possible conflicts between the
pairwise and the w, outcomes. Using Ficure 1 to compute candidate B’s w, = (1, A, 0)
tally of an election, notice that she receives one point from each voter who has her
top-ranked; these voters are of types 5 and 6, where B is a vertex of the ranking
regions. With our Ficure 2a restriction, B receives y X 1 points. The second place
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votes of A points per voter come from the adjacent 1 and 4 regions of Ficure 1. With
Ficure 2a, this adds Ax points for B. As the remaining two regions (2 and 3) represent
where B is bottom-ranked, they contribute no points, so the total tally is y + Ax. The
w, tallies for all candidates are as follows:

Candidate Tally
A (=Dx—Ay+A (6)
B y+ Ax
C I-x+(A— Dy

The rest of the analysis mimics what we did with the pairwise vote. Namely, to
determine which profiles define the relative A > B or B > A rankings, plot the A ~ B
boundary line defined by equating the A and B tallies. This defines the parametrized
family of equations (1 —2A)x — (1 + A)y + A = 0. Because x = 3, y = 3 satisfies this
equation for all A-values, all of these lines pass through (3,3), which we call the
rotation point. The line defined by A is determined by the rotation point and

A 0), its x-intercept. The results for all candidate pairs follow:

R rE
Pair Equation Rotation Pt | «x-axis Pt
A~B|A-20r-Q+Ny=-Ar | (53 [(=259)
A~Cl@-A+Q-20y=1-A| (43) | (20 )
B~C| (+Nx+@-Ny=1 &3 | (209)

The effects of these lines are depicted in Ficure 3 for three special cases: the
plurality vote (A = 0); the Borda Count (A = $); and the antiplurality method (A = 1).
This figure identifies interesting behavior because it displays how election outcomes
change with the procedure. To explain, notice that although the three boundary lines
for the A =0 and A =1 triangles agree, each line is identified with a different pair of
candidates. Connecting them is a fascinating rotation where, as the value of A
increases, each boundary line rotates in a clockwise direction from its A = 0 setting to
reach the adjacent boundary line position when A =1. For instance, the A~C

FIGURE 3
Computing w, outcomes.
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boundary line passes through the (0,1) vertex of T, when A =0 (the plurality vote),
becomes vertical when A = (the Borda Count), and stops at what had been the
A ~ B original position when A = 1.

An immediate consequence of this rotation is that, with the exception of the (3, 3
point (the Condorcet profile where all w, methods have a completely tied outcome),
each profile experiences three different w, election rankings as A varies through its
admissible values. If a point is on a boundary line when A =0, then two of the
rankings have ties and one is strict. Otherwise, two of the rankings are strict and one
involves a pairwise tie. The geometry shows that, rather than being an isolated
phenomenon, conflict is unavoidable.

As a second consequence, consider a region with transitive pairwise votes; say, the
region labeled “1” in Ficure 2b. (In Ficure 3, this set of profiles is the region to the
right of the vertical dotted line.) By examining this region in the A=0 and A=1
triangles, we see that these profiles allow two different strict plurality and antiplurality
election outcomes. For instance, the pairwise A > B > C outcome is accompanied by
a plurality ranking of either A > B > C (type 1) or the conflicting A > C > B (type 2).
While the difference in outcomes creates a conflict, at least the plurality and pairwise
procedures agree on which candidate is top-ranked. A similar analysis holds for the
antiplurality A =1 where the conflicting ranking is B>A>C (type 6). Here,
however, the pairwise and antiplurality methods agree only on who should be
bottom-ranked; they can disagree on the rest of the ranking and who should win.

The Borda Count allows not only two but three strict rankings for.profiles from
each of the three strict pairwise ranking regions. In fact, the rotation of the
indifference lines and the monotonicity of the x coordinate (of the “x-axis point” in
table (7) proves that for each A €(0,1), w, admits three different strict election
rankings for each of the three sets of profiles. This, of course, provides plenty of robust
examples of conflict between the pairwise and w, rankings.

The triangle defining cyclic pairwise outcomes admits even more conflict: here,
anything can happen with any w, method. Namely, accompanying a pairwise cycle, we
can have any strict w, ranking, any w, ranking with one pair tied, or a completely tied
outcome.

Because (from elementary trigonometry) all ranking regions of the A=0and A =1
triangles have the same area, each has the (limiting) probability of §. This is also true
for the smaller triangle with cyclic pairwise voting. Consequently in either
case—whether we consider all profiles in T, or restrict attention to profiles causing
pairwise cycles—the limiting probability for any strict ranking for the A=0,1
procedures is ¢. The Borda Count (A = ) favors the three outcomes of types 1, 3,
and 5 (the types from the profile) with limiting probability of %; the remaining three
types have limiting probabilities of 5. What connects these different values is that
(from the x-axis values of table (7)) the areas of some regions monotonically decrease,
while others increase, as A — é_. Then they change to monotonically approach the
common value § as A = 1. These statements, and others are equally easy to verify, are
collected in the following theorem:

THEOREM 2. If the three voter types 1, 3, and 5 are allowed, then each profile that
is not a Condorcet profile admits three different w, election outcomes as A varies.

The set of profiles with pairwise votes that define a particular strict transitive
outcome allows only two strict election rankings with the plurality and with the
antiplurality vote. In each case, one of these outcomes agrees with the pairwise
rankings. All other w, outcomes admit three different strict rankings, one of which
agrees with the pairwise ranking. The profile set causing cyclic pairwise outcomes
admits all possible w, rankings.
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If all T, points are equally likely, then the limiting probability of any strict election
ranking (in either the set of all profiles or the cyclic region) is § for =0, 1. For the
Borda Count the limiting probability for either setting is % for outcomes of types 1, 3,
and 5, and § for the remaining three types.

The likelihood of an election outcome being of a particular type either strictly
increases or strictly decreases as A = 3.

These results show that even with only three types of voter preferences, conflict can
arise among the pairwise and positional election outcomes. So, which procedure is
“best?” Frankly, the answer is not clear from this information. For instance, the fact
that the plurality and pairwise outcomes identify the same candidate as being
top-ranked can be fashioned into a strong argument in favor of the plurality vote—at
least for this setting. On the other hand, the ranking of a unanimity profile should be
its election ranking, so we should expect election outcomes to favor the three
particular types represented in the profile. This is true for the Borda Count, but only
to a lesser degree for the other w, methods. This observation can be developed into
an argument supporting the Borda Count. With a little imagination, an argument can
probably be fashioned to support any other procedure. So which procedure should we
use?

4. The Beverage Example Revisited

While the Condorcet setting allows profiles to have different w, outcomes, the conflict
is nowhere near as spectacular as that displayed in the beverage example, where
completely reversed w, election rankings occur for different A values. This example,
where two of the preferences share an edge of the Ficure 1 triangle and the third
ranking is from a ranking region with the remaining vertex, captures a familiar election
setting where one candidate, A, is favored (top-ranked) by a portion of the voters, but
strongly opposed (bottom-ranked) by the rest of them. The voters who dislike A,
however, split in their opinions about the other two candidates. (This may have been
the situation created by the candidacy of P. Buchanan during the 1996 Republican
Presidential primaries.) As in Ficure 4a, define x =n,/n, y =ny/n, and z =n,/n.
To connect the beverage example with Ficure 4a, identify M, B, W respectively with
A, B, C so that beverage profile of equation (1) becomes x = %, y= s, and z = %

B>C

-a. Admitted types b. Tria.ngle T,

FIGURE 4
The beverage example setting.
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Again, the z =1 — (x +y) restriction allows all possible profiles to be represented
as (rational) points in the Ficure 4b triangle T, = {(x, y)|x, y > 0, x +y < 1}.

Pairwise outcomes Just as in Section 3, identifying profiles with their accompany-
ing pairwise outcomes involves only elementary algebra. As Ficure 4a shows, in an
{A, B} election only type 2 voters vote for A, so A beats B if and only if x> 3.
Similarly, in an {A,C} election, A beats C if and only if x > 1. The common T,
boundary for these conditions is the vertical dashed line of Ficure 4b. For the
remaining pair {B,C}, B wins if and only if y > 3; here the T, boundary is the
horizontal dashed line in Ficure 4b.

The pairwise election combinations allow only three (strict) transitive pairwise
ranking outcomes; no real surprises occur with the pairwise vote. The election
rankings are denoted in Ficure 4b with the voter type numbers. Again, by assuming
that each T, point is equally likely, the areas of these regions show that the pairwise
outcomes define the type 4 ranking C > B>A (of the beverage example) with
limiting probability §, and each of the other two types with limiting probability .
Again, elementary computations using equation (5) show that these limiting values are
approached with order 1/n.

Positional outcomes This setting’s particular interest is in the conflict among the
pairwise and w, outcomes. As in Section 3, the w, tally for each candidate is as
follows:

Candidate Tally
A x
B y+riz=0-Ny—2Ax+2A €)]
C 2+ Mx+y)=1—(10-Nx+y)

By setting pairs of tallies equal to each other, the w, outcomes change according to
the following table of parametrized equations.

Pair Equation Rotation Pt x-axis Pt
A~B 1+ Dx = (1= Dy =12 (3.3) (25.0)
A~C @-Nx+1-Dy=1 -0 | (&40 | @
B~C | (1—2Mx+201—-Dy=1-2A (0,4 (1. 0)

A major difference from Section 3 is that the rotation point of each line differs with
each pair. As we will see, this is what causes new kinds of election outcomes to occur.
The boundary lines, and the resulting division of profiles identified with the plurality
(A=0), Borda (A= 3), and antiplurality (A = 1) voting systems, are represented in
Ficure 5. (The three rotation points are indicated by the solid dots.)

These figures immediately disclose all sorts of conflicting election outcomes. For
instance, the square defined by the dotted lines are all profiles defining the C > B > A
pairwise ranking. The A = 0 portion of Ficure 5 shows that these pairwise rankings can
be accompanied by any plurality ranking. In other words, expect conflict; the table (1)
example demonstrates only the one possibility of a A > B > C plurality outcome.
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1 C>B |, A>B!

&

FIGURE 5
Computing w) outcomes.

Moreover, it appears from these figures (and we show next why it is true) that the
same serious conflict holds for all w, where 0 <A < 3.

To find even more fascinating changes, notice the importance of the profile which
defines a completely tied w) election outcome. By being on the boundary for all w,
ranking regions, this point identifies how election rankings vary with A. We already
know there are significant changes because for A = 0 the point is at the safe (3,3
location (with one voter for each of the three preferences); it moves to the T,
boundary at (3, 3) when A = 3; it vanishes at infinity when A = 1. These changes in
position are direct consequences of the different locations of the rotation points for
each pair.

This observation suggests that important information about election behavior is
obtained by plotting how this point of a completely tied election varies with A. This
point is the intersection of the A~ B and B ~ C boundary surfaces, so, by solving

these equations for (x, y) in terms of A, the equation for this point is

1+A 1—A+A2

or, because A =3x — 1,
JleseEd® 1 1
YT TE=8 T T3 T 3Bx—29)

This curve is plotted in Ficure 6 along with the A =0 boundary lines. The
accompanying magnified version shows the translated A = ¢ boundary lines.

As Ficure 6 offers a wealth of information about election behavior, so we describe
only what happens to the profiles in the square defined by the dotted lines (with a
C > B > A pairwise ranking); analysis of the other regions is left to the interested
reader. First, the fact that the curve approaches infinity as A — 1 is what allows the
A =1 figure to have parallel, vertical boundary lines; this is true for no other A value.
Consequently, for all X <1, at least two different w, strict rankings accompany the
C > B > A pairwise outcomes. Because the point of complete ties leaves T, only after
the Borda Count, for A < 5 any conflicting w, ranking can accompany these pairwise
rankings.
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A>C

A>B =

52 | .
i
! C>B
A=0 A=1g

FIGURE 6
Locus of the completely tied points.

This curve also determines how w, rankings change with a fixed profile. To indicate
the analysis, consider a profile p located between the curve and the A ~ B plurality
line. Although the plurality election ranking for p is A> B> C, as A increases in
value the w, complete tie point moves along the curve forcing different ranking
regions to cross p. This can be illustrated with the magnified version of a portion of T,
in Ficure 6 which shows the A = % regions. If p has a type 4 election outcome for A = 7,
then p already produced election outcomes of types 1, 6, and 5 for earlier A values. As,
table (4) shows, p has the property that each candidate wins with the appropriate w,.
Furthermore, counting tied outcomes shows that each profile in the region between
the curve and the A ~ B plurality boundary line admits seven different election
rankings for different w, procedures. (A similar argument shows that profiles below
the curve and with the A > B> C plurality election outcome have seven rankings
where each candidate is bottom-ranked with some w,.)

The next natural question is to find the smallest number of voters allowing the
peculiarity that anyone can be elected. This requires finding a point (x, y) in this
region with the smallest possible common denominator. Because (x, ¢) must satisfy
3<x <3 and y <x, while being above the curve (so y > 3), we start by seeking a
point with least common denominator so that § <y <x < 3. This point is (5}, 17 ), S0
examples require at least eleven voters. As the first point above the curve is (55, 75 )
the desired profile involves nineteen voters. It is

Number Preferences
8 A>C>B
7 B>C>A (1D
4 C>B>A

where A € (3, 17) ensures the victory of B.
We can find even more. The limiting probability of this peculiar behavior depends
on the area between the curve and the A = 0 boundary line for A ~ B (that is, the line
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y =x). This area is

: 1 1 11
[(2l—§+m dx—E—gan.

By considering only the profiles in the square (with area 1), the limiting probability is
four times this value, or 3+ — $In 2 = 0.0253.

A small selection of the election behavior attributed to profiles restricted to the
“beverage-type” preferences follows.

THEOREM 3. Suppose the profiles are restricted to preferences from the beverage
example. With limiting probability ¢ — $In2, it is possible for a profile to elect all
three candidates when the ballots are tallied with different w, methods. The profile
must have at least 19 voters; the smallest such profile is given in table (11). When
restricted to where the pairwise votes define the C > B > A ranking, the probability of
this behavior is 5 — $ln2.

The election phenomenon where each candidate is bottom-ranked with some w,
procedure has limiting probability  —[§ — 21In2] = 2In2 = 0.1540. (When restricted
to the profiles with C > B > A pairwise outcomes, the probability is 0.308.) All such
profiles involve at least nine voters; a nine-voter example results if two voters are
removed from each type in table (1).

For A =0 the limiting probability of all six possible strict outcomes are equal. For
the Borda Count, there are four possible strict outcomes. The limiting probability of a
type 2 or type 3 outcome is %, of a type 4 outcome is 1—72, and of a type 5 outcome is
1. For the antiplurality vote, the limiting probabilities for the type 3 and 4 outcomes
are, respectively, + and 3.

5. Symmetry

We have discussed only two of the g possible cases. However, by exploiting the

symmetry admitted by voting, we have nearly completed the analysis.

Neutrality To introduce the first symmetry, suppose that, for totally unexplained
reasons, everyone in the beverage example of table (1) confused Beer and Wine. (For
instance, a ranking listed as M > W > B was intended to be M > B > W.) It is easy to
correct this mistake: if all voters interchanged Wine and Beer on their ballots, then
we just interchange Wine and Beer in the election outcomes.

This property, where if every voter permutes the names of the candidates in the
same manner, then the election outcome experiences a similar change, is called
neutrality. More precisely, if o is a permutation of the names of the candidates, then
let o(p) be the profile where these changes occur for each voter in the profile p.
Then a voting procedure f satisfies neutrality if for any permutation of names o and
for any profile p we have

fCa(p)) = (f(p))- (12)

Neutrality converts our analysis in Section 4 of what happens when voters have
types (2,4,5) into what happens when voters have types (1,4,5). This is because,
according to table 1, the second situation is obtained from the first by flipping the
triangle about the B ~ C axis. In mathematical terms, by interchanging B and C
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names in each ranking of the first setting, we obtain the second one. Thus, the two
settings are related by equation (12) and the permutation interchanging B and C.

Other permutations and the resulting settings are listed below. This symmetry and
the (2,4, 5) prototype account for six of the 20 possibilities.

Setting Permutation Setting Permutation

2,4,5) Identity (1,4,5) B—-C,C—B

2,3,5) A—>B B—A (1,3,6) A—->C,C—>A (13)
2,3,6) | A>B,B>C,C—>A |(1,4,6)| A>C,C>B,B—>A

Similarly, neutrality converts the analysis of Section 3, where voters’ preferences
come from {1,3,5} types, into the setting where voters’ preferences come from
{2,4,6}. Here, any transposition, such as A — B, B — A suffices. This accounts for
eight of the 20 cases.

Reversal  To introduce the next voting symmetry, suppose for the beverage
example of table (1) that each voter misunderstood the instructions and marked the
ballots in a completely reversed order. For instance, voters who marked their ballots
as M > W > B really meant B > W > M. If this reversal holds for all voters, then it is
reasonable to assume that the election ranking can be corrected by reversing the
original one. Namely, if p represents the operation of reversing a ranking, it is natural
to assume that

fCp(p)) =p(f(p)).

The only difficulty with this assumption is that, in general, it is false. To illustrate with
the beverage example, apply the plurality vote to the bottom-ranked candidates to
discover that, when preferences are reversed, the plurality election outcome remains
M > B > W, with a 9:6:0 tally.

To discover what does occur with reversal symmetry, recall that the antiplurality
vote requires a voter to vote against his or her bottom-ranked candidate. Thus, it is
equivalent to voting for our bottom-ranked candidate and then reversing the outcome.
So, if we apply the plurality vote to p(p) and reverse the resulting ranking, we obtain
the antiplurality ranking for p. (Readers may wish to carry out this computation with
the beverage example of table (1).) The following theorem asserts that the same
reversal effect applies more generally.

THEOREM 4. (See [6]) Let f(p,w,) be the w, election ranking for profile p. All
profiles p and positional methods satisfy

f(p.w) =p(f(p(p),W:-1))- (14)

Equation (14) allows us to handle six more of the g cases. To illustrate what

happens, some details are given for what we call the “reversed beverage” example,
where the preferences are denoted by Ficure 7a. As A is top-ranked by two types of
voters and bottom-ranked by the remaining type, it is reasonable to expect no election
surprises. This is not the case; instead, the election behavior is very similar to that
described in Section 4. Indeed, the reason for the similarity of outcomes and the
“reversed beverage” nomenclature comes from comparing Ficure 4a and Ficure 7a.
Each letter x, y, and z is reversed relative to the complete indifference point. We
emphasize the consequences of this reversal.
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C
| B>A
1 C>A
|
1
1
C>B !
o=
1
1
. 1
2 ]
! 5
A B |
a. Admitted types b. Triangle T;

FIGURE 7
The reversed beverage example setting.

One aspect of reversing preference is apparent by comparing Ficure 4b and 7b: the
figures agree, but the rankings are reversed. This reversal continues with the following
table, which catalogues information about the w, boundary lines:

Pair Equation Rotation Pt | z-axis Pt
A~B | @=Nx—Ay=1-2A (1,1 (522.9)
A~C A+ Nr+ry=1 a -1 (125.0) | a3
B~C | (1-20)x—21y=—A\ (0,) (1=25.9)

To convert table (15) into table (9), let u =1 — A. This means that the analysis of
table (15) is exactly that of Section 4, except that w,_, assumes the role of w,; for
example, the antiplurality and plurality methods swap roles, properties, illustrating
examples, and peculiarities. This is, of course, a special case of equation (14). For
instance, the antiplurality (A = 1) outcome is C > B> A for (x, y) = (3, i¥) from
Ficure 7a. As this profile is the reversal of the beverage example equation (1) with
plurality (A = 0) outcome A > B > C, the outcome is as Theorem 4 requires.

An easy way to use Theorem 4 to convert results from Section 4 to the current
setting is to add or subtract 3 from all of the type numbers of Ficure 5 and Ficure 6,
and replace statements about A with statements about 1 — A. This completes the
analysis for the reversed beverage examples. It means, for instance, that only nine
voters are needed to create an example where all candidates can be elected with some
w, and that the likelihood of this occurring is higher than the likelihood of each
candidate being bottom-ranked by some procedure. Namely, the reversal of prefer-
ences reverses the conclusions obtained from Ficure 6. Only the Borda Count has
essentially identical conclusions for both settings; this is because A= 3 is the only
procedure allowing wy, = w, _, . Incidentally, this symmetry condition turns out to be a
technical reason which ensures that the Borda Count has strongly favorable proper-
ties.

By applying this analysis along with equation (14) to all of the settings in table (13),
we account for six more settings. This leaves only six more to consider.
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Final case The final situation is where voters come from types 1, 2, and 3. There
are no real surprises in the analysis, so it is left for the interested reader. By use of the
symmetry of neutrality, the same analysis extends to the six remaining cases.

6. Summary

Surprisingly subtle, unexpected election behaviors can arise when voters are restricted
to only three kinds of preferences. Of particular interest is that the questions raised in
Section 1 about potential paradoxical election behavior can be answered by using
elementary geometric arguments. As shown, conflict between pairwise and positional
methods occurs in abundance and, when it occurs, it is supported by an open set of
profiles. (This answers the robustness question.) Problems about the likelihood of
strange behavior, or finding supporting profiles with the minimum number of voters,
reduce to elementary arguments. Moreover, the geometry allows us to “see” where
conflict occurs and to determine whether paradoxical outcomes are, or are not,
isolated. For instance, Ficure 6 identifies the profiles where each candidate wins with
an appropriate w, method. So, when preferences are restricted as indicated, we must
expect such pathological behavior in about 1 in 40 elections (with a sufficient number
of voters). As shown by Ficure 7, other settings increase the likelihood of this behavior
to about 3 in 20 elections.

Although we emphasized those election surprises that occur when voters’ prefer-
ences come from only three possible types, other surprises already occur when
preferences are restricted to only two types. Indeed, this is a special case of our
analysis because it just requires setting one of x, y, or z equal to zero; it is the
behavior on one of the edges of the triangles T,, T,, or T,. For instance, by
considering the vertical leg (where x = 0) of the triangles in Ficure 5, we discover how
this highly restrictive case allows two strict pairwise rankings to be accompanied with
conflicting w, outcomes. Without question, elections admit surprising behavior.
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Global Positioning System:
The Mathematics of GPS Receivers

RICHARD B. THOMPSON

University of Arizona
Tucson, AZ 85721

Introduction

GPS satellite navigation, with small hand-held receivers, is widely used by military
units, surveyors, sailors, utility companies, hikers, and pilots. Such units are even
available in many rental cars. We will consider the mathematical aspects of three
questions concerning satellite navigation.

How does a GPS receiver use satellite information to determine our position?

Why does the determined position change with each new computation, even though
we are not moving?

What is done to improve the accuracy of these varying positions?

We will see that receivers use very simple mathematics, but that they use it in
highly ingenious ways.

Being able to locate our position on the surface of the earth has always been
important for commercial, scientific, and military reasons. The development of
navigational methods has provided many mathematical challenges, which have been
met and overcome by some of the best mathematicians of all time.

Navigation by means of celestial observation, spherical trigonometry, and hand
computation had almost reached its present form by the time of Captain James Cook’s
1779 voyage to the Hawaiian Islands. For the next 150 years these methods were used
to determine our location on land or sea. In the 1940s electronic navigation began
with the use of fixed, land-based, radio transmitters. The present-day LOng RAnge
Navigation (LORAN-C) system uses sequenced chains of such transmitters.

The use of satellites in navigation became common in the 1970s, with the introduc-
tion of the Navy Navigation Satellite System (NAVSAT or TRANSIT). This system
uses the Doppler shift in radio frequencies to determine lines of position and
locations.

The Satellites

Almost all satellite navigation now uses the Global Positioning System (GPS). This
system, operated by the United States Department of Defense, was developed in the
1980s and became fully operational in 1995. The system uses a constellation of
satellites transmitting on radio frequencies, 1227.60 mHz and 1575.42 mHz.

The original design of the system provided for eighteen satellites, with three
satellites in each of six orbits. Currently, there are four satellites in each orbit. In the
basic plan, the six orbits are evenly spaced every 60° around the Earth, in planes that
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FIGURE 1
The System of Satellites.

are inclined at 55° from the Equator. Orbits are circular, at a rather high altitude of
20,200 kilometers above the surface of the Earth, with periods of twelve hours.
Ficure 1 displays one configuration of the basic eighteen satellites. Although not
drawn to scale, it gives the correct feeling that we are living inside a cage of orbiting
satellites, several of which are “visible” from any point on the surface of the Earth at
any given time.

Receivers

Current GPS receivers are electronic marvels. They are hand-held, run on small
batteries, weigh as little as nine ounces, and can cost under $150. We can turn on a
receiver at any point on or above the surface of the Earth and, within a few minutes,
see a display showing our latitude, longitude, and altitude. The indicated surface
position is usually accurate to within 100 meters, and the altitude is usually in error by
no more than 160 meters.

How does a small radio receiver listen to a group of satellites, and then compute our
position, with great accuracy? We start by noting exactly what sort of information is
received from the satellites. Each satellite sends signals, on both of its frequencies,
giving (i) its position and (ii) the exact times at which the signals were transmitted.

The receiver also picks up time signals from the satellites, and uses them to
maintain its own clock. When a signal comes in from a satellite, the receiver records
the difference, At, in the time at which the signal was transmitted and the time at
which it was received. If the Earth had no atmosphere, the receiver could use the
speed, c, of radio waves in a vacuum to compute our distance d =c-At from the
known position of the satellite. This information would suffice to show that we are
located at some point on a huge sphere of radius d, centered at the point from which
the satellite transmitted. However, the layer of gasses surrounding the Earth slows
down radio waves and, therefore, distorts the measurement of distance. Receivers can
partially correct for this by allowing for the effect of mean atmospheric density and
thickness. Information from several satellites is combined to give the
coordinates—Ilatitude, longitude, and altitude—of our position in any selected refer-
ence system.

Several factors restrict the accuracy of this process, including: (i) errors in the
determined positions of the satellites; (ii) poor satellite positioning; (iii) limitations on
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the precision with which times and distances can be measured; and (iv) the varying
density of Earth’s atmosphere and the angles at which the radio signals pass through
the atmosphere. Some of these difficulties are overcome by the use of an ingenious
plan that provides the key to GPS technology. It is rather complicated to explore this
method in the actual setting of positioning on the Earth: The distances are large, the
time differences are small, and the geometry is all in three dimensions. Fortunately,
we can capture most of the salient features of GPS receiver operation in a simple
two-dimensional model.

A Simple Model

Suppose that you are standing somewhere in a circular lot, with a radius of 100 ft. The
lot is paved, except for an irregularly-shaped gravel plot that surrounds you. The mean
distance from your position to the edge of the gravel is 20 ft. Cars circle the lot on a
road. To determine your position, messengers leave from cars on the road and walk
straight toward you. When such a messenger arrives, he tells you where and at what
time he left the road. You have a watch and know that all messengers walk at a rate of
5 ft/sec on pavement but slow down to 4 ft/sec on gravel. Our model is shown in
Ficure 2.

.

S
e R N\
| Pavement

100 ft

\

FIGURE 2
The Model.

Consider a rectangular coordinate system with its origin at the center of the lot.
Distances will be measured to tenths of a foot, and time will be measured to tenths of
a second. The location of a point on the road will be described by its angular distance
from due north, measured in a clockwise direction.

At noon a messenger leaves a position 45° from north. When he arrives, your watch
shows that it is 20.2 seconds after noon. Since you have no way to know the exact
distance that he walked on the gravel, you assume that he covered the mean distance
of 20 ft. At 4 ft/sec, this took him 5 sec. For the remaining 15.2 sec he walked on

pavement, covering 5% X 15.2 sec = 76.0 ft. Allowing for the assumed distance of 20

ft on the gravel, you know that you are located at some point on a circle of radius 96.0
ft, centered at the starting location of the messenger.
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A second messenger leaves the road at a point 135° from north at 12:01 pm and
walks to your position. On his arrival, your watch shows that it is 29.5 sec after he
started. Assuming that he took 5 sec to walk 20 ft on the gravel, he walked 5 ft/sec
24.5 sec = 122.5 ft on the pavement. Hence, you are on a circle of radius 142.5 ft,
centered at this messenger’s point of departure.

The coordinates of the departure points for the two messengers are P, =(100-
sin45°,100° cos45°) and P, = (100-sin 135°,100- cos 135°), respectively. Using our
precision of one tenth of a foot, these are rounded to (70.7 70.7) and (70.7,— 70.7).
Thus, the coordinates (x,, y,), of your position satisfy

(xo = 70.7)* + (y, — 70.7)* = 96.0°
(xo—T70.7)" + (y, +70.7)° = 142.5% |

The system has two solutions, (—20.0,39.2) and (161.4,39.2), rounded to tenths.
Since the latter point is outside of the lot, you can conclude that you are located 20.0
ft west and 39.2 ft north of the center of the lot. The situation is shown in Ficure 3.

FIGURE 3 FIGURE 4
Two Messengers. Three Messengers.

So far so good. Suppose that, just to be careful, you decide to check your position
by having a third messenger leave the road at a point 180° from north and walk to
your location. He leaves at 12:02 pm and, according to your watch, arrives 32.2 sec
later. As before, you compute your distance from this departure point P;. Ficure 4
shows the result of adding information from the third messenger to your picture.

What has happened? The most likely problem is that your watch does not agree
with the times used at the departure points on the road. Suppose that your watch runs
steadily but has a fixed error of & seconds, where a positive & means that your watch
is ahead of the road times and a negative ¢ means that your watch is behind the road
times. If we let At be the time difference between departure and arrival, as shown on
your watch, then the estimate for the distance traveled is
d(At, &) =201t + (At sec— & sec—5 sec)5—si%.

Thus, the radius of each circle is in error by the same amount, —5 ¢ ft, and there
must be a value of & for which the three circles have a common point. Ficure 5 shows
the effect of various watch errors.


http://www.jstor.org/page/info/about/policies/terms.jsp

264 MATHEMATICS MAGAZINE

FIGURE 5
Effect of Watch Error.

It appears that your watch has an error of approximately 5 sec. The error and the
coordinates of your position are a solution for the following system of equations:

(xo—70.7) + (y, — 70.7)* = d(20.2, &)*
(x0—70.7)* + (y, +70.7)* = d(29.5, 8)* .
(x,—0.0)" + (y, +100.0)* =d(32.2, &)*

The system can be solved numerically, starting with seed values of 0 for & and
estimated coordinates of your position for x, and y,. There is only one solution giving
a location inside of our lot. Rounding this to our level of precision yields (x, y,, &) =
(10.9,31.2,4.9). You conclude that you are 10.9 ft east and 31.2 ft north of the center
of the lot, and that your watch is 4.9 sec fast. You note the coordinates of your
position, and discard the watch error, which is of no further interest to you.

As this example of our GPS model shows, you can use time difference information
from three messengers to determine your position, relative to a coordinate system in
the lot. The only tools needed for this effort are a steady, but not necessarily accurate,
watch and the ability to approximate the solution of a system of three equations in
three unknowns.

Back to the Satellites

Our “lot” is now the region inside of the satellite orbits (including the Earth), “cars on
the road” are satellites, “messengers” are radio waves, and “gravel” is the Earth’s
atmosphere. We take the center of the Earth as the origin in our coordinate system.
Working in three dimensions, we need information from four satellites. Call these S,
Sy, Ss, and S,; and suppose that S, is located at (X;,Y;, Z;) when it transmits a signal
at time T,. If the signals are received at times T/, according to the clock in our

receiver, we let At; =T/ — T, and let & represent any error in our clock’s time. The
receiver allows for the mean effects of passage through the Earth’s atmosphere and
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computes distances d(At;, &) that indicate how far we are from each of the satellites.
Our position (xg, vy, z,) is located on each of four huge spheres. In most situations,
there will be only one sensible value of & that allows the spheres to have a point in
common. Our location is determined by solving a system equations.

(%o _X1)2+ (yO—Y1)2 + (=g _Z1)2 =d(At,, 8)2
(%0 =X,)2 + (yo = Yo)* + (2 — Z,)* = d(At, )’
(xo _Xs)z + (yo_Y3)2+ (Zo _Z3)2 =d(At3, 8)2
(xo_X4)2+ (yo_Y4)2+ (zO—Z4)2=d(At4, 8)2

When a numerical solution is found, the rectangular coordinates (x, y,, z,) are
converted into the essentially spherical coordinates of latitude, longitude, and altitude
above sea level.

As a practical matter, there are times and locations when a GPS receiver can
receive usable data from only three satellites. In such cases, a position at sea level can
still be found. The receiver simply substitutes the surface of the Earth for the missing
fourth sphere.

To summarize our results so far, the receiver is expected to (i) receive time and
position information from the satellites, (ii) maintain a steady (but not necessarily
accurate clock), (iii) select four satellites with a good range of positions, (iv) find an
approximate numerical solution for a system of four equations, and (v) make a
transformation of coordinates. Given the current state of electronics, these are easy
tasks for a small hand-held instrument.

Variability of Positions

Our second question about GPS positioning causes a great deal of discussion and
confusion among those who use the system. If a person stands in one fixed location
and determines repeated positions with a receiver, the coordinates of these positions
will vary over time. Since the observer’s location has not changed, the changing
positions are often attributed to alteration of the satellite signals by the Department of
Defense. The Department does, at times, degrade the satellite data and cause a loss of
GPS accuracy. This Selective Availability (SA) will be phased out within the next few
years. (It is stated that SA is used for reasons of national security.) However,
manipulation of the signals explains very little of the variation in positioning. The
variation is primarily caused by random errors in measurement, the selection of
different satellites, and by the effects of the atmosphere. We will illustrate these
problems by returning to our simple 2-dimensional model.

In our example, you determined that the coordinates of your position were
(10.9,31.2) and that your watch was 4.9 seconds fast. Suppose that these values are
exactly correct. After a couple of minutes you again use three messengers to
determine your location. This time the first messenger leaves from the road at a point
that is 47.2° from north. Rounding to your level of precision, you record the departure
point as P, =(73.4,67.9). In this case we will assume that your information on the
location of the departure point is not quite correct, and that the messenger actually
left from Q, = (74.1340, 67.3568). This is only a 1.0% error in the first coordinate and
a 0.8% error in the second coordinate. Suppose also that the messenger actually
encountered 25.9 ft of gravel on his way to your position.
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Keeping track of 6 places, the distance from Q, to your location is 72.841286 ft.
Covering the 25.9 ft of gravel at 4 ft/sec took the messenger 6.475000 sec, and
covering the 46.941286 ft of pavement at 5 ft/sec took 9.388257 sec. The actual
walking time was 15.863287 sec, which with your watch error of 4.9 sec, is 20.763257
sec. Using the allowed one place of precision, you would note A¢ =20.8 sec. Recall
that, as you stand in the lot, you have no way of knowing the amount of gravel over
which a messenger has walked. Hence, you always assume the mean distance of 20 ft.
Under this assumption, the messenger would take 5 sec to cover the gravel, leaving
15.8 sec to walk on the pavement. At 5 ft/sec he would cover 79.0 ft. You conclude
that the messenger has traveled 99.0 ft, and that you are at that distance from P,.

To find your position, messengers leave from the road at points 138.5° and 8.1°
from north. You record these departure points as P, =(66.3,—74.9) and P, =
(14.1,99.0). Now suppose that your information is slightly incorrect, and that the
departure points are actually Q, = (66.8404, — 75.6490) and Q, = (13,9731, 98.0100).
In addition, assume that the second messenger walked over 22.1 ft of gravel and that
the third messenger walked over 12.0 ft of gravel. Working in the same way as you did
for the first messenger, you record time differences of 30.1 sec and 18.9 sec for the
second and third messengers, and solve the following system of equations.

(xo—73.4)% + (y, — 67.9)* =d(208, &)
(x,—66.3)" + (y, + 74.9) =d(30.1, &)*
(xo—14.1) + (y, — 99.0)* = d(18.9, &)*

The solution, when rounded, gives your location as (x,, y,) = (5.4,32.3) and your
watch error as 4.4 sec. Small errors in the location of the departure points, variation in
the amount of gravel covered, and the rounding of numbers to one-place have
produced a “position” that is 5.61 ft from your actual location of (10.9, 31.2).

We can let a computer simulate what happens if you stay in your fixed location and
make repeated computations of your position. Each determination of a position is
made with the following assumptions. (i) Three points of departure for messengers are
picked at random, assuming that the angle between any two points of departure is at
least 30°, but not more than 150°. (i) The distance over which a messenger must walk
on gravel is a normal random variable with a mean of 20 ft and a standard deviation of
5 ft. (iii) The relative error in each coordinate of the point of departure is a normal
random variable, with a mean of 0 and a standard deviation of 0.3%.

It is common to discuss accuracy of positioning in terms of circular errors of
probability (c.e.p.). The n% c.e.p. is the distance, d,, such that the probability of an
error that is less than or equal to d,, is n%. A set of 1,000 simulated positions allowed
us to estimate c.e.p.’s for our model. We found dy, = 2.11 ft and dg5 = 7.69 ft. (It is
interesting to note that one simulated position was 16.9 ft from the correct location.)
The positions computed in a run of 50 simulations are plotted on the left side of
Ficure 6, along with circles of radii dy, and dy5. Our probabilistic model yields
results that agree quite well with plots of successive positions found with an actual
GPS receiver from a fixed location.

Commercially available GPS units operate under what is called the Standard
Positioning Service (SPS), measuring distances using satellites’ 1575.42 mHz fre-
quency. Under the best circumstances, the 50% c.e.p. for the SPS is 40 meters. As we
mentioned, selective availability adds a small amount of random error into the SPS. At
almost all times the 50% c.e.p. is no more than 100 meters, with a common value
being around 50 meters. Under these conditions, the 95% c.e.p. for SPS is
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FIGURE 6
Simulations.

approximately 100 meters. As in our model, almost all of the variability in SPS
positions comes from random errors that are inherent in the components of the
system.

PPS and Differential GPS

What is done to remove some of the random errors from GPS positions? At the present
time, there are two common methods of improving GPS accuracy. One of these is the
Precise Positioning Service (PPS), which is available for governmental use only. This
uses signals transmitted on both of the GPS frequencies to eliminate much of the
variability caused by the Earth’s atmosphere. Just as with various colors of light in
the visible spectrum, the reduction in the speed of a radio wave as it passes through
the atmosphere depends upon its frequency. Hence, measurements of the arrival
times of two signals of different frequencies can be used to greatly improve the
accuracy of our distance estimates.

As before, the situation is most easily understood in terms of our simple two-dimen-
sional model. To model the PPS we will suppose that each messenger is accompanied
by an assistant, who also walks at 5 ft/sec over pavement. However, while the
messenger walks at 4 ft/sec over gravel, the assistant is slowed to 3 ft/sec when
walking on gravel. We will return to our first example of the variability of positions
and see what improvement in accuracy results from knowledge gained with assistant
messengers.

Recall that your location in the lot has coordinates (10.9, 31.2), and that your watch
error is 4.9 sec. The first messenger departed from Q, =(74.1340,67.3568) and
walked over 25.9 ft of gravel while covering the 72.841286 ft to your position. With
your watch error, you recorded a time difference of At = 20.8 sec.

The assistant messenger will require 8.633333 sec to cover the 25.9 ft of gravel at 3
ft/sec and 9.388257 sec to cover the paved part of the route at 5 ft/sec. Hence, his
total walking time will be 18.021591 sec. Due to the error in your watch and the
allowed level of precision, you record an elapsed time of As=22.9 sec for the
assistant messenger. The time differences for the messenger and the assistant messen-
ger give you enough information to estimate the amount of gravel that lies between
you and the point of departure on the road, and to estimate the total distance from
your location to the point of departure. If we let G be the number of feet of gravel
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and let D be the total distance, in feet, then we have the following system of linear
equations:

208=2—-C

+

D-G

229 = E

+

W Q »Q

Solving the system at your level of precision, you conclude that the messenger and
his assistant crossed 25.2 ft of gravel, and came 97.7 ft from their point of departure.
Thus, as best you can tell, you are at some point on a circle of radius 97.7 ft, centered
at the nominal point of departure P, = (73.4,67.9).

Similarly, suppose the second and third messengers also have assistants. Computa-
tions similar to those above show that the second messenger traveled 144.8 ft,
including 22.8 ft over gravel, and that the third messenger traveled 91.5 ft, including
12.0 ft over gravel. (These values include any possible watch error.) Your estimate for
the actual distance that a messenger has traveled is now a function of the distance, G,
of gravel covered; the time difference, At; and your watch error, &.

fi
d(G,At, &) =G ft+ [ At sec — & sec — G—ftt- S—Q—.
4 sec

sec

This distance formula and the three points of departure lead to a system of
equations whose solution (xg, y,, £) gives an estimate of the coordinates for your
position and for the error of your watch.

(xo—73.4)" + (y, —67.9)* =d(25.2,20.8, £)*
(xo—66.3)" + (y, + 74.9)° = d(22.8,30.1, £)*
(xo—14.1)" + (y, — 99.0)> =d(12.0,18.9, £)*

Solving this system, at your level of precision, yields a position of (x,, y,)=
(9.2,31.6) and a watch error of 4.8 sec. Your current estimate is only 1.75 ft from your
correct location of (10.9, 31.2). This compares with an error of 5.61 ft found by using
single messengers.

A computer-generated set of 1,000 simulations for positions computed with messen-
gers and assistants gave estimates of 0.50 ft and 1.90 ft for the c.e.p.’s dy, and dg;,
respectively. The maximum distance of a computed position from the actual location
was 3.41 ft. These simulations were based upon the same conditions that we used for
our model of the SPS. The positions computed in a run of 50 simulations for our
model of PPS are plotted on the right side of Ficure 6, along with circles of radii dy,
and dg5. Comparison of the two sides of Ficure 6 shows that there is a considerable
gain in accuracy when most of the variation due to distance walked over gravel is
eliminated.

In the real world of satellites and positions on the Earth, the use of two radio
frequencies in the PPS produces considerably more accuracy than can be obtained
with the single-frequency SPS. It is believed that the PPS has a 50% c.e.p. of
approximately 16 meters.

A second method for improving the accuracy of the usual SPS locations is coming
into use at airports and major harbors. This is called the Differential Global Position-
ing System (DGPS). Most of the error in a GPS position is due to random variables in
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the atmosphere and the satellite system. Hence, within a small geographical area, the
error at any instant tends to be independent of the exact location of the receiver.
DGPS exploits this situation by establishing a fixed base station, whose exact location
is already known. Equipment at the base station computes its current “GPS position,”
compares this with its known location, and continuously broadcasts a correction term.
A DGPS receiver in the area receives its own satellite information and computes its
position. Simultaneously it receives the current correction from its base station, and
applies this to its computed position. The result is a very accurate determination of the
receiver’s position; 50% c.e.p.’s for GDPS run close to 9 meters.

Conclusions

The very ingenious idea of leaving clock error as a variable allows a GPS receiver to
display our position on the Earth at any location and at any time, using nothing more
than simple algebra. The variations in computed positions are almost entirely due to
inherent limitations on precision within the system. A second clever plan allows the
use of two radio frequencies to eliminate much of the variability caused by the passage
of signals through the Earth’s atmosphere.
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Introduction

When in doubt, generalize. That’s often good advice for mathematicians, and we
follow it here to great advantage. Intrigued by a striking similarity between recursive
algorithms for approximating the arctangent and the natural logarithm, we look for a
simple theory that includes both. There are certainly enough connections between the
two functions to make a common source likely, even though the algorithms seem to
have disparate geometrical origins. Instead of focusing on these special cases, we
broaden our search, and examine a general method for producing convergent se-
quences in recursive form. As we study it, a simple pattern emerges, answering the
original questions and leading to some unexpected additional results.

We find a simple relation between a type of recursion formula and the limit of the
sequence it generates. We discover a single formula unifying our algorithms for the
arctangent and the natural logarithm, and that’s what produced the similarity. We find
other interesting examples; one unifies recursive algorithms for computing the arcsine
and the inverse hyperbolic sine. Along the way, we’ll see some interesting examples of
how mathematics develops. More importantly, we’ll leave an idea that undergraduates
can use for independent investigations, with a real opportunity to make new discover-
ies.

A deeper analysis of a family of recursive algorithms for approximating a number of
transcendental functions appears in the 1971 article by B. C. Carlson [1]. For each
choice of f; and f; from the list

flx ) =35(x+y),  folx,y) =vay
fa(x, y) = fol(x’y) . fulxy) =Vyf1(x’y) >

and for each x, y,> 0, he showed that both the sequences {x,} and {y,} defined
recursively by

vt =[i( X Ya)s Yurr =F(%05 Y)

converge to an integral determined by ¢ and j and involving x, and y, as parameters.
The use of such recursive sequences to compute transcendental functions has a long
history, going all the way back to Gauss; Carlson gives a lengthy bibliography. Clearly
our results are related to his, but the exact relationship is far from clear; the methods
employed are certainly different.

The Arctangent and the Natural Logarithm

Connections between the arctangent and the natural logarithm are known to every
student of calculus, since both arise as integrals of rational functions. The connections
become much stronger when the functions are extended to complex arguments;
Euler’s formula for ¢'? is probably the most concise expression of the relationship
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between circular and exponential functions. Euler’s formula has its origins in the
relationship

1+iz)
1—-iz )

1
arctan z = —z—lrlog(
discovered in differential form by John Bernoulli in 1702. Not many years later,
R. Cotes found a logarithmic version of Euler’s formula; he published it under the
title Harmonia Mensurarum since it brought together measurements for the circle
and the hyperbola. The history of this formula is outlined by J. Stillwell in Chapter 15
of [4].

A simple recursive algorithm for computing arctangents may have been known by
Archimedes, even if the modern vocabulary wasn’t. The key ideas are all present in his
approximation of 7 by perimeters of circumscribed regular polygons; the change that
results from doubling the number of sides is not too hard to analyze. Since the
arctangent measures directed arc length on the unit circle, we can approximate it in
much the same way as we find the arc length of the whole circle. We form a sequence
of circumscribed polygonal paths, all tangent to the arc at its endpoints; the first has
two segments and one corner. We form the next by cropping the corner symmetri-
cally. Instead of thinking of the second path as having one long and two short
segments, we think of it as four equal segments, each extending from a corner to a
point of tangency. At each stage, the next path will be formed by cropping all the
corners in the same way, so the nth polygonal path in the sequence is made up of 2"
equal segments and has 2"~! corners.

The details are simple to work out if we introduce Cartesian coordinates, so that
arctan x corresponds to the arc of the unit circle between the y-axis and the ray from
the origin through (x,1). Ficure 1 shows the important relationships. The figure on
the left shows how the first path is formed; the one on the right shows how the second
path is formed from the first. Referring to the sketch on the left, our first approxima-
tion to arctan x is 2s, and it’s easy to calculate s. Since radii and tangents meet
orthogonally, the triangle with vertices (s, 1), (x, 1), and (x/v x2+1, 1/Va?+1)is
similar to the one with vertices (0,0), (x, 1), and (0, 1). Their corresponding sides are
proportional, so

(s,1) (x,1)

1‘
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 00 0.1 0.2 0.3 0.4 0.5 0.6
FIGURE 1

Forming circumscribed paths.
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Solving for s yields

X
S = .
1+Va2+1

The same formula can be used when x <0, since the sign of s agrees with the sign
of x. More importantly, we can use it to find the length of each of our approximating
paths.

Since the nth path is formed by 2" equal segments, our nth approximation to
arctan x is A, (x) = 2"s,(x), with s,,,(x) calculated from s,(x) exactly as s,(x) =s
was calculated from x:

Sp(x) = $,(%) .
wi1(%) l+m

Rewriting this in terms of {A,(x)}, we obtain the recursive formula

24A,(x)
An+l(x) = )
1+1/272"4,(x)" + 1

starting with A (x) =x gives arctan x as the limit of this sequence.
Our recursive algorithm for the natural logarithm is almost as elementary. It’s based
on the formula

for n > 0;

m
Inx= lim m(\/;— l).
m—®
This arises in many ways; the most elementary is an explicit calculation of [{t™' dt
as a limit of Riemann sums. Instead of making At constant, we partition the inter-
val of integration into subintervals with endpoints at xk/m™ for k=0,1,2,...,m,

making #; 'At, constant instead. Fermat used a similar partiton to show
[t" dt =x"* /(n + 1). (For details, see Appendix A.4 of Simmons [3].) The quantity

m(Vx —1)is an upper sum for [7t~' dt when x > 1, and for 0 <x <1 it’s an upper
sum for [! —¢~* dt. Ficure 2 shows the approximation for x =3 and m = 4.

Instead of using the whole sequence {m(Vx — 1)}, we restrict our attention to
m = 2", That accelerates the convergence, and the resulting subsequence is simpler to
compute. All the roots we need are successive square roots, so we can calculate them
recursively. To make the term with n =0 be x instead of x—1, we shift the

2+
151
1...
05} —
% 1 2 3 4

FIGURE 2
Approximating the natural logarithm.
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argument and approximate In(x + 1) instead of In x. Defining
L,(x)= 2"(2\/x +1-1),

we see that Ly(x) =x and

2L,(x
L) =2 (2TL () H T - 1) = 1 ‘/2-"nL( ()x) 1

We rewrote our recursion formula as a fraction for two reasons. The last version is
computationally superior; loss of significant digits in the square root as 27"L,(x) = 0
is no longer a problem. Just as importantly, it brings out the similarity between our
two recursive algorithms. The similarity increases when we write the limits of the two
sequences as integrals:

x
"liiI:oA,l(x)=arctanx=L t2cf:1’ —0o<x <™,
and
* dt
lim L =ln(x+1)=| /% > —1.
Jim L () =ln(x+1) = [ 777,

Something seems to be happening here. To explain it, we need a general theory that
includes both examples.

Generating Recursive Algorithms

An abstract method for deriving similar algorithms is suggested by examining closed-
form expressions for both our sequences:

A,(x)=2"tan (2 "arctan x),
L(x)= 2"(2\/"9; +1 —1) =2"[exp{2 "In (x + 1)} — 1]

Both have the form G,(x) = 2"F(27"G(x)), where F is the inverse of G. In both
cases F(0) =0, and that makes

lim G,(x) = lim FUCE) ZFO) _ o)),
n—® t—

Both have F'(0) =1, and so G,(x) = G(x). There’s also a common reason why we
can write the sequences recursively: in both cases we know how to write F(3y) in
terms of F(y).

In general, that last condition is the hard one to carry out, even though it’s easy in
theory. Knowing F and G, we can define a halving function H by the formula
H(x) = F(3G(x)); then for x = F(y) we obtain F(3y) = H o F(y). Then

Gya(x) =277 F(27 1 G(x)) = 2" H o F(27"G(x)) = 2" H(2 7" G,(x))

gives us a recursion rule for a sequence starting with Gy(x)=F(G(x))=x and
converging to G(x).

In practice, finding an explicit formula for H can be impossible, because we may
lack a useful formula for F or G. Since H gives us an algorithm for computing G, it’s
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especially useful to be able to find it in these cases. Fortunately, there’s a reasonable
way to recognize the halving function when we see it, and it explains the relationship
between H and the derivative of G. We state it formally; the proof is quite simple.

THEOREM. Let I be an interval containing the origin in its interior, and let g be a
positive, continuous function on I, with g(0)=1. Let H:I = I be a solution of the
initial value problem

dH x
& - —2gg((13) , H(0)=0.

Then the sequence {G,(x));_,, defined recursively by
Co(x) =5, Gyan(x) =27 H(Z G, (x)),

satisfies

lim G,(x) = ["g(¢)dr, allxel.
n—ow 0

Proof. 1f we define G on I by the formula G(x) = [;g(¢) dt, then G is continuous
and strictly increasing on I with G(0) = 0; it is also differentiable, with G'(x) = g(x).
The range of G is therefore an interval | with 0 in its interior, so the inverse F of G
is a differentiable function mapping J onto I and satisfying F'(0) =1/g(0) = 1. Thus,
for each x €1, 27"G(x) €] for each nonnegative integer n, and 2"F(27"G(x)) =
G(x). To complete the proof, we need only show that H is the appropriate halving
function.

Define a function ® on I by the formula

®(x) =2G(H(x)) — G(x), x€L.
Since H(0) = G(0) = 0 we have ®(0) = 0, and
®'(x) =2g(H(x))H'(x) —g(x) =0, allxel.
Hence ® =0 on I, and so
G H(x) = 5G(x), all €L,
Applying F to both sides yields

F(%G(x)) — F(Ge H(x)) = H(x),

and the proof is complete.

In principle, one can find H by solving the initial value problem stated in the
theorem. The differential equation can be solved by separation of variables, yielding

[ty de=5 [e(t) .

but that may be a long way from finding an explicit formula for H(x). A much easier
task is verifying that a given function is a solution of the differential equation, and
sometimes it isn’t too hard to guess a solution.
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Examples

Our first example includes our recursive algorithms for the arctangent and the natural
logarithm. Let a and b be arbitrary real numbers, and let I be the interval containing
0 on which ax® + bx + 1 is positive. Define g and H on I by the formulas

1 x
——, H(x)= .
ax?+bx +1 (%) 1+ Vax2+bx+1

g(x) =

Simple algebraic calculations show

L i(e) 4 bH(x) 1= A D (b Vet e ]

g(H(x)) * 2 ] ,
(1 Vot + e+ 1)

and so

g(x)  _ 2Vax* +bx+1 +bx +2
2g(H(x)) 2Vax2+bx+l(1+1/ax2+bx+1)2

It's easy to show that this agrees with H'(x), so our theorem says the recursively
generated sequence

Go(x)=x, G, (x)=
) = 1+V/a[27"G,(0)]* +B[27"Gy(x)] + 1

satisfies

. _(r dt
,,hfloc"(x)_fo at®’ +bt + 1

for all finite x such that the interval of integration contains no singularities.

Our next example comes from the arcsine function; the half-angle formula for the
sine tells us what the halving function should be. We can include a parameter in g
and H:

1 x
X)=——=, H(x)= .
8(x) Vaxr® +1 ) Ve +2var® +1

Differentiating H(x)* and simplifying the result leads to the identity

1 ,
53g(x) =2H(x)H'(x),
and simplifying aH(x)* + 1 leads to
xg(H(x)) =2H(x).

Division then shows

g(x) :
—=———=H'(x).
2y )
The case a = —1 corresponds to an algorithm for the arcsine, while ¢ =1 gives the

inverse hyperbolic sine.


http://www.jstor.org/page/info/about/policies/terms.jsp

276 MATHEMATICS MAGAZINE

Our final example involves a pair of lesser-known transcendental functions we
found in Carlson [1]. They are the inverse lemniscatic sine

dt

V1—¢4

X
arcslx=f
0

and its hyperbolic twin

arcslh x = f __dt

o Vi+et

Historically, these integrals are quite important; an identity for the first, discovered by
G. C. Fagnano in 1718, spurred Gauss’s study of elliptic functions. Stillwell gives an
account of these developments in [4].

The inverse lemniscatic sine has a simple geometric interpretation in terms of the
curve defined parametrically by

1 1
x=—tV1+t?, y=—=tV1—¢t*, —-1<t<l.

V2 V2

It’s plotted in Frcure 3, along with the chord subtended by the image of [0,0.9]. The
parameter t is a geometric one, since x* +y® =t The curve is easily recognized as
following a lemniscate, since

Wyttt = ()

the polar form of this equation is r? = cos26. We've parametrized the portion in the
first and third quadrants. An elementary calculation shows

(- 2
dt (dt T
Thus the integral defining arcsl x represents directed arc length along the curve, with
the argument x corresponding to directed chordal length. The inverse lemniscatic
hyperbolic sine derives its name from the analogy with the integrals defining the

arcsine and the inverse hyperbolic sine, rather than from a geometric interpretation of
the integral.

0.3
0.2
0.1

-0.14
—0.2
-03

FIGURE 3
The curve defining arcsl «.
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Fagnano found the duplication formula

2zV1 —z*

arcsl x = 2arcsl z, where «x= i and 22 < V2 — 1,
z

we solved for z to obtain a halving function. Once again we can insert a parameter to
treat both arcsl x and arcslh x with a single formula. Defining

X

1/2
24 2V1 + ax? +1+\/1+ax4)

yields 2H'(x) = g(x)/g(H). The calculation justifying this equation is lengthy; we

omit it.

and H(x)=

gL
gl V1 + ax*

Analyzing the Convergence

It’s easy to use the closed-form expression
G,(x) =2"F(27"G(x))

to establish the rate of convergence of {G,(x)}; just use a Taylor expansion of F. For
example, our sequence {L,(x)} converging to In(1 + x) satisfies

L,(x)=2"[exp(27"In(1 +x)) — 1]

[n(1+x)]*  [n(1+x)]°
212" 3122n ’

=In(l+x)+

Unless |In(1 +x)| is quite large, thirty to forty iterations of the formula will achieve
the same level of accuracy available on most hand-held calculators. Comparable
accuracy can be obtained more quickly by using Richardson extrapolation, a technique
described in most introductory numerical analysis texts (see, e.g., [2]). In particular,
using 2L, ,(x) — L,(x) leaves an error on the order of 272" instead of 27".

It would be interesting to find additional examples where H and G or g are both
known explicitly; we certainly haven’t exhausted all the possibilities. There’s lots of
room for experimentation here, and very little knowledge is needed to do it. In
addition to starting with g and trying to find H, it’s also possible to start with H and
use the recursive sequence to define G. But then it’s a real challenge to identify G in
terms of familiar functions.

Acknowledgment. I thank the referees for a number of helpful suggestions.
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Squares Inscribed in Angles and Triangles

HERBERT BAILEY
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Introduction For a square to be inscribed in a triangle, one side of the square must
rest on one side of the triangle and the other two vertices of the square must lie on
the other two sides of the triangle. We define a square to be inscribed in an angle if
one side of the square rests on one side of the angle, a third vertex is on the other side
of the angle, and the fourth vertex is in the interior of the angle. These definitions
include obtuse angles if the square is permitted to rest on an extended side of the
triangle (or angle). With this extended definition of inscribed, the results of this paper
are also valid for obtuse angles and obtuse triangles. Examples are shown in Ficure 1.

A\ /

FIGURE 1
Examples of inscribed squares.

For right triangles there are only two squares that can be inscribed, and an
interesting classic problem is to determine which square is the smaller. This problem
was posed in a recent Rose-Hulman alumni magazine. We received about thirty
solutions, with at least six essentially different methods. A dissection solution of this
problem for an isosceles right triangle is given in [1]. It turns out that, for any right
triangle, the inscribed square with its side along the hypotenuse is always smaller.
What can be said about squares inscribed in non-right triangles?

If the triangle is not a right triangle then there will be three inscribed squares, each
with one side resting along a triangle side. In this case it can be shown that the longer
the common triangle side, the smaller the corresponding inscribed square. We will call
this the ordering property. Martin Gardner [2] has written an enjoyable article
concerning inscribing and circumscribing using rectangles, squares, and triangles. He
describes a method for constructing a square inscribed in a triangle and also
references a construction given by Pélya [3]. A short proof of the ordering property for
acute triangles is given in [4] using some trigonometry. This proof can be easily
extended to include obtuse triangles.

278


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 71, NO. 4, OCTOBER 1998 279

In this paper, we give two different proofs of the ordering property. The first is
based on some results about squares inscribed in angles. For the second proof, we
consider triangles of fixed area and determine how the length of the side of an
inscribed square varies with the length of the triangle side on which it rests. Both of
these proofs are geometric and both lead to some interesting related results.

Congruent squares inscribed in angles Consider triangle ABC and the congru-
ent squares PQRS and P'Q'R’S’ inscribed in angle CAB, with QR resting on side AB
and Q'R’ resting on side AC (Ficure 2). Let M be the intersection of QP and Q'P’
and let N be the intersection of RS and R'S’. The right triangles AQPand AQ'P’ are

RI
p S
QI
NI S
M
A o P R B
FIGURE 2

Congruent squares inscribed in angle CAB.

congruent and thus the right triangles AQM and AQ'M are congruent. Hence angles
QAM and Q'A’'M are congruent and line AM bisects angle CAB.

Also AR = AR’ and thus the right triangles ARN and AR'N are congruent. Hence
the line AN also bisects angle CAB and the points A, M, and N are collinear. The
corresponding vertices of the squares are symmetrical with respect to this bisector and
thus the line through S and S’ is perpendicular to the bisector.

If side AC is longer than side AB and if the squares both grow larger while
remaining congruent, the vertex corresponding to S’ will reach side BC before the
vertex corresponding to S reaches this side. The square corresponding to P'Q'R'S’
will then be inscribed in triangle CAB. The square corresponding to PQRS continues
to grow until it is inscribed in the triangle as the vertex corresponding to S reaches
side BC. Hence the inscribed square, whose side is along the shorter triangle side
AB, is larger than the inscribed square along the longer side AC. This proves the
ordering property. Note that if the triangle were isosceles (BA = CA), then S and §'
meet BC simultaneously since SS’ is parallel to BC. In thlS case these two squares
inscribed in the triangle are congruent.

A collinearity for pairs of inscribed squares For two congruent squares, PQRS
and P'Q'R’S’, inscribed on opposite sides of an angle at A, we have shown that the
points A, M, and N are collinear. Surprisingly, these points are also collinear even for
a noncongruent pair of squares. Consider the inscribed squares shown in Ficure 3,
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o)

14 S
R/
Q. s
Q R
A B
o D
N
E

F

FIGURE 3

Line of intersection for squares inscribed in an angle.

where QR and Q'R’ lie on AB and AC respectively. Let M be the intersection of
the lines through QP and Q'P" and N be the intersection of the lines through RS
and R'S". Let F be the intersection of the lines through Q'P" and SR. Let MD and
NE be the line segments perpendicular to the line segments SF and Q'F respectively.

The following sequence of congruences (=), similarities (~), and equalities
demonstrate the result:

A MDF = A PQA, NE=P'Q, A MNF = A PP'A,
- . MO _ PO
aMDN=aPQP,  5AQP~aMOP,  GE =55,
P'Q _ND

oF ~DM> 4 MQA~sNDM,  ZQAM=/DMN.

Hence A, M, and N are collinear. We will call this line the line of intersections of the
two inscribed squares.

Ficure 4 shows a triangle, its three inscribed squares, and the three lines of
intersection. It would be nice if the lines were concurrent, but this is not the case in

general.

FIGURE 4
Lines of intersection for the three angles of a triangle.
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Length of the side of a square inscribed in a triangle of fixed area Consider a
triangle of area A with an inscribed square resting on a side of length x (Ficure 5).
Let h be the altitude of the triangle and s the length of the sides of the square.

/A 'h

FIGURE 5
A square inscribed in a triangle of area A.

The given triangle and the shaded triangle are similar, and thus

h—s h h _xh  2Ax

s x
where h =2A/x since A= hx/2. This formula is also given in references [2], [4],
and [5]. Ficure 6 is a graph of the above equation showing how s varies with x for
fixed A.

a v/-Z_A— 2A/a
FIGURE 6
Length of the side of an inscribed square as a function of the
length of the triangle side on which it rests.

The maximum point on this curve can be found by calculus or by the following
variation of completing the square. Let f(x) = 1/s; then

424 x| 1 1
f(x)=W=ﬂ+;=ﬁ[x/V/2_A+\/2_A/x]

- 7_21_2.[(\0/»/5? - \/\/2_A/x)2+2].

When the squared term above is zero, f assumes a minimum. Thus s assumes a
maximum value at x = V2 A . Note that at the maximum, the area of the square is
52 =A/2 (half the area of the triangle). Indeed, at this maximum, h =x=v2A . Also
note that f(2A/a) =f(a) (Ficure 6). If x>V2A then the expression inside the
parentheses is negative and f(x) is monotone increasing, and thus s(x) is monotone
decreasing. Similarly if 0 <x <V2 A, then the expression inside the parentheses is
positive and s(x) is monotone increasing.
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Now let a and b be the lengths of two sides of a triangle of area A, and s, and s,
be the lengths of the sides of the corresponding inscribed squares. To prove the
ordering property we must show that b >a implies s, <s,. This follows from the
monotonicity of s when @ > V2 A .

When a < V2 A, we no longer have monotonicity but we can show that b is large
enough to ensure s, <s,. In this case 2A/a>V2A and we have shown that
s(2 A/a) = s(a) (Ficure 6). Also if hy, is the altitude of the triangle to side b (Ficure 7)
is then A =bh, <ba and thus b >2A/a. Since s(x) is monotone decreasing for
x>2A/a then s, <s,. This completes this proof of the ordering property.

b
FIGURE 7
Triangle of area A and altitude A,

Triangles whose sides all exceed V2A If the given triangle is equilateral with
sides of length x, then A = x2/3 /4 and thus x > V2 A . In this case the lengths of all
three sides are greater than V2 A . We will show that this is not the usual case and, in
fact, “most” triangles have exactly one side with length less than y2 A . First note that
if ¢ is the longest side (or one of the long sides in the isosceles case) of a triangle, and
h, the altitude to this side then 2 A = ch, < ca < ¢ Thus the length of the longest
side of a triangle is always greater than V2 A .

The investigation of the lengths of the two shorter sides will be done numerically.
To simplify the computations, we choose length units so that the longest side
has length one. Let a and b be the lengths (relative to the longest side) of the two
shorter sides, then the area of the triangle is given by Heron’s formula
A=+/S(8—1)(S—a)(S—b),where S=(1 +a+b)/2. To see when side a is less
than V2 A, we plot in Ficure 8 the pairs of points (a, b) satisfying the equation

1.5

ya

I,

FIGURE 8
a* = 4A? for (a, b) on the light curves and b* = 4A on the heavy curves.
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0~ ~-a

FIGURE 9
Triangles with (g, b) in the shaded region have all sides exceeding V2 A .

a*=4A” (light lines). The region inside these two “bow ties” corresponds to
a* <4A% And similarly, the heavy lines correspond to b* =4A* and b* <4A? in
their interior.

Ficure 9 is that part of Ficure 8 with the restrictions 0 <a <1 and 0 <b < 1. The
(a, b) domain is also restricted by the triangle inequality @ + b > 1. Since @ > 0 and
A >0 then the inequality a* < 4A? is equivalent to @ <V2A and likewise for the
corresponding b inequality. Let R, be the region in Ficure 9 such that a < V2 A and
R, the region with b < V2A. Thus a <V2A if and only if (g,b) is in R,, and b
<V2A if and only if (g, b) is in R,. In the shaded region, both @ and b are greater
than V2A. The point (1,1) corresponds to equilateral triangles. The point
(\/—2_ /2,V2 /2), where the two curves are tangent to each other, corresponds to
isosceles right triangles with a =b = V2 A .

Determining the areas of these regions by numerical integration shows that the
probability that all three sides of a triangle have lengths exceeding V2 A is 0.134.

We now give a second method for calculating the probability that all the sides of a
triangle exceed V2A. We first prove the following preliminary result. Consider a
circle (Ficure 10) with center at K and radius r. Let PS be a chord of length u and PQ
a line segment of length v tangent to the circle at P. Then the area of the shaded
triangle PQS is vu®/4r.

To prove this, we let L be the midpoint of the chord and M be the point on PQ

such that SM is perpendicular to PQ. Then the right triangles KLP and PMS are

similar since angle PSM is congruent to angle KPL. Thus # =1 where h is the

u’

length of the altitude SM. Hence the area A of triangle PQS is given by

FIGURE 10

Triangle PQS with two vertices on the endpoints of a chord PS of length u,
the third vertex on a tangent line through P.
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P Q
FIGURE 11
Triangle PQR with a <b <1 has all sides exceeding Y2 A when R is in the shaded region.

A=vh/2=vu?/4r. If r=1/2 and v=1, then A =u?/2.

We now consider a triangle PQR with longest side PQ of length one, PR of length
a, and QR of length b with a <b (Ficure 11). R must lie in the left half of the unit
square with base PQ since a <b. Also R must lie inside the unit circle with center Q
since b < 1. The area of the region with these boundaries is 7/6 — V3 /8 = 0.307. If

a>V2A then from the above preliminary result, R must lie outside the circle with
center at the midpoint of the left side of the unit square and with radius = 1/2. This
region is shaded in Ficuge 11; its area is

(12 — 3V3 — 57 + 12arcsin § + 3arcsin £) /24 = .0667.

Thus the probability that the lengths of all three sides of a triangle exceed V2 A is
0667 /.307 = 0.217.

It was surprising that the probabilities were different for the two methods, so we
checked the results by using Monte Carlo simulation and found good agreement with
the analytical results in both cases. The explanation is that, in the first calculation, we
chose the lengths of the two shorter sides at random; in the second calculation, we
chose the coordinates of the third vertex at random. A third method of calculation is
to choose, at random, the two angles adjacent to the longest side; in this case the
probability turns out to be 0.115.

This unexpected behavior of probability results based on continuous densities was
first observed by Joseph Bertrand in 1889 and is known as Bertrand’s paradox [e.g., 6].
His problem was to determine the probability that the length of a random chord of a
unit circle will exceed V3. He found three different answers depending on what
coordinate system is chosen for the uniform continuous sample space. A brief
description of this problem with some animation can be found on the Internet [7].

Acknowledgment Our thanks to George Berzsenyi for his help and encouragement.
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An Unexpected Maximum
in a Family of Rectangles
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Introduction The genesis for this paper was Problem 749 from the Macalester
College problem-of-the-week series:

MACALESTER PROBLEM 749. Given a square A, A, A3 A, and a point P inside the
square. The lengths of PA,, PA,, and PA, are 4, 3, and V10, respectively. What is the
length of PA,?

The reader is encouraged to try to solve the problem now, before proceeding. In
our solution to this problem we realized that A; A, A; A, need not be a square. This
observation led to the study of families of rectangles that satisfy hypotheses like those
of Problem 749, and ultimately to this paper.

A quick solution to Problem 749 is provided by Theorem 1, which is a special case
of Feuerbach’s Relation (see [4] or [6]).

THEOREM 1. If P is any point in the plane of rectangle A| A, Az Ay, and if a; is the
distance from P to A,, then ©_,(—1)'a?=0.

A, A,

a

ay

as

FIGURE 1
a%+a§=a§+ai,

Thus, an ordered triple of distances from a point P to three consecutive vertices of
a rectangle uniquely determines the distance from P to the fourth vertex, but does
not uniquely determine the rectangle. For instance, let a,, ay, as, and a, be given
with ©f_,(—1)a? = 0. If vertex A, of the rectangle is fixed at the origin and P is on
the circle I' with center A, and radius a,, then vertices A, and A; will be on the
x- and y-axes, respectively, and vertex A, will be determined by the positions of Ag
and A;. As P moves around I, the rectangle changes. See Ficure 2.

We used The Geometer’s Sketchpad to explore various properties of the rectangles.
The software allowed us to keep a,, a,, a5, and a, fixed while moving the point P
around the circle T, thus showing how the rectangles change. A natural question
arises: When is the area of the rectangle an extremum? Although the perimeter is not
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Ay Ay Ay A,
a a,
ag \
P,
as
a3 ay
As A, A

FIGURE 2
Two rectangles with the same a;’s.

constant, a reasonable-sounding guess was that the extrema occur when the rectangle
is a square. Alas, experiments using the area computation feature of The Geometer’s
Sketchpad indicated that this guess was incorrect. We solve the area-optimization
problem in the last section.

Another natural question is to describe the locus of A, under the construction
given above. The “trace locus” feature of The Geometer’s Sketchpad shows, when a,
is the smallest distance, that this locus is a closed curve that resembles a guitar pick.
See Ficure 3. If a, is not less than both a, and a,, then the rectangle does not exist
for P on certain arcs of the circle I', and the locus of A, will be a disconnected curve.
In the next section we discuss the equations for the locus of A,.

Y

X

FIGURE 3
A “guitar pick’ traced by vertex A,.

In our search of the literature we discovered that problems related to Problem 749
have a long history. For example, an old problem in geometry is to construct a
specified kind of triangle when the distances from a point in the plane of the triangle
to its vertices are given. Geometry problem 151 in the June-July 1901 American
Mathematical Monthly [3] gave the distances from a point to three corners of a
square, which is equivalent to specifying a right isosceles triangle. Baker [1] says the
problem in [3] is a variation of Rutherford’s problem, in which the triangle is
equilateral. When the triangle is equilateral and the distances are 3, 4, and 5,
Rabinowitz [5] and Gregorac [2] call the problem the 3-4-5 puzzle. Many other
references may be found in [5]. Walter [7] considers distances of 3, 4, and 5 to three
consecutive vertices of a rectangle. Several generalizations have been studied, such as
letting the distances be a, b, and ¢ ([3], [5], [7]), allowing the point from which the
distances are measured to be above (or below) the plane of the triangle ([7]), replacing
the triangle by a polygon ([5]), and replacing the triangle by a simplex in R" with
n + 1 vertices ([2]).

The locus of A, Let a,,a,, a;, and a, be fixed, with ©¢_,(— 1)'a? = 0. Relabel the
points and distances, if necessary, so that a, is the minimum of the distances with A,
fixed at the origin. Let the coordinates of A, be (x,0), and the coordinates of A, be
(0, y). Since P is on the circle I, which has radius a,, the coordinates of P are
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(ayc0s6, a,sin@), where 6 is the angle measured from the positive x-axis to A, P.
Since Aj, is on the circle with center P and radius as,

(x — aycos 6)* + (aysin 0)° = a2,

One solution to this quadratic in x is

x=x(0) =aycos 0+ y/a3 —a sinf . (1)

Similarly, since A, is on the circle with center P and radius a;, we get

y =y(0) =aysin 6+ 1/a} —aj cos’d . (2)

These are parametric equations for the locus of A,, with parameter 6 in [0,27).
Taking the positive sign in front of the radicals guarantees that the rectangle will be in
the first quadrant.

However, equations (1) and (2) are only one of four pairs of parametric equations
for the locus of A,. The other three are determined by using the negative square root
in one or both equations. The four curves are given by

x =aycos(0) + (—1)""" al — asin®(6)

" y =a,sin(0) + (—1)"""/a? — aZcos?(6)

m,n=12.

More possibilities arise if we do not require a, to be the minimum distance. Again,
there are four cases: (a) a, <@, and a, < a,, (b) ay <a, and a, > a;, (¢) a, > a, and
ay < as, (d) ay > a, and a, > a,. In cases (b), (c), and (d), each of the curves C,,, is
disconnected. For example, in case (b) the curve C; is given by equations (1) and (2).
The quantity under the radical in (1) is negative for two @-intervals, 8, < 6 < 6,, and
6, < 6 < 6,. Further, x(0,) = —x(0,) and x(6,) = —x(6;). Thus the curve “jumps”
to the second quadrant when 6= 6, and “jumps back” to the first quadrant when
6 = 6,. Similar behavior occurs in case (¢) with (2), and in case (d) with both (1) and
(2). Ficure 4 shows all sixteen possible curves C,,, for cases (a)—(d), with the plot
styles for the curves as shown in Ficure 4a.

mn

FIGURE 4
a,€(13,15, 18},
(a) ay <ayand a; <a; (b) ay>a;and ay, <a,
() ay<asand ay>a; (d) ay>a;and ay>a;
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Optimizing the area The area of the rectangle can be expressed in terms of 6. Let

a(0) =(azcos 0+ M)‘(azsin6+ \/m).

From (1) and (2) it follows that the area of the rectangle is A(8) = |a(8)| whenever
a(0) is real-valued. Note that we are not assuming that a, is the least of the distances
and that, because of the symmetry of the four curves in each part of Ficure 4, we can
restrict ourselves to C;.

Insight into where A(6) is optimal may be obtained by using Mathematica or
another computer algebra system to plot A(6), x(8), and y(6) on the same axes for
0<60<2m. These graphs show that A(8) is not necessarily largest when the
rectangle is a square, as our earlier experiments with The Geometer’s Sketchpad
indicated. In Ficure 5a (in which a; =7, a, = 3, and a; = 5) the extrema for the area

area

Y
0
™ 2
(a)
FIGURE 5

Extrema need not correspond to squares, which may not exist.

curve do not correspond to intersections of the x and y curves. In fact, the rectangle
may never become a square, as shown in Ficure 5b (in which a; =7, a, =1, and
a; = 4), where the graphs of x and y do not intersect.

To optimize A(8), we first find and simplify a'(6).

/( 0) ( a9 )
a(0)= .
‘/a% — a3 cos®0 \/d% —a?sin®0
(cos 0y a3 — a3 sin®0 — sin6y/a; — a; cos’0 ) -a(6).

The chain rule then gives

ay" (cos 0y a3 — a3 sin®0 — sinfy/a; — a3 00520)

2_ 2 2 2 _ 9 .2
\/al azcos¢9\/a3 ag sin“0

la(0)].

A(0) =

If a, exceeds either a, or a, there will be intervals in which A(6) and A'(9) are
not real valued. This is illustrated in Ficure 6 (in which a; = 5.5, a, =6, and a5 = 5).
However, the values of A(8) and the values of the one-sided derivatives A’, () at the
endpoints of each of these intervals agree. Hence, A(6) may be viewed as being a
differentiable function on the interval [0, 27r] minus the intervals where A(6) is not
real valued. Thus, the only critical points occur when cos6 al — a3 sin’9 =
sin@y/a; — a3 cos®0. This condition simplifies to tan6 = +a,/a,. The negative is an

extraneous solution, so the only critical points of interest occur for 6 such that
tanf=a,/a,. (3)
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—

T 2
FIGURE 6
Graph of A(8) is discontinuous if a, is greater than a; or as.

If 0 < 6 < arctan (az/a,) then ay/y/a} + a3 <sin6 and cos6 <a,/y/a} + aj . This

observation implies that A'(6)>0 for 6 in (0,arctan(a;/a,)). Similar reasoning
shows that if arctan(as/a,) < 6 < /2 then A'(8) is negative. Hence, if @ satisfies
(3) and lies in the first quadrant, then the corresponding rectangle has maximum area.
Analogous arguments show that if 6 satisfies (3) and lies in the third quadrant, the
corresponding rectangle has minimum area.

To gain geometric insight into why the extrema occur when tan 6 = a,/a;, construct
the auxiliary rectangle B, A, B; B, with B, on the x-axis, B, on the y-axis, A, B; = a,,
and A, B, = a;. See Ficure 7. Then the angle between the positive x-axis and A, B,
is the same as the angle for which the area is maximum. Further, rectangle B, A, B; B,
can be used to determine where P must be on I" for a rectangle to exist for a given
set of distances a;. In the first quadrant, P must lie on the arc of I' which is inside
B, A, ByB,. Outside the auxiliary rectangle, either PA; > a5 or PA, > a,. Symmetric
conditions hold in the other quadrants. The condition tan 6 = a;/a, for maximum area
can also be thought of as describing the angle for the limiting position of P as
ay— /a3 +a} with af+a} fixed. In the special case of a,=0, the family of
rectangles has exactly four congruent members, corresponding to tanf = ta,/a,.

The above discussion is summarized in the following theorem.

B,(0,a3) \ B

4, By(a,,0)

FIGURE 7
P must be on the arc inside B; A, B3 B,.
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A Ay

d)l?. ¢34

FIGURE 8
The angles around P.

THEOREM 2. If the distances a,, ay, a;, and a, satisfy Li_,(—=1'a}=0 and
determine a family of rectangles as described above, then the rectangle with maximum
area occurs when the angle 6 is in the first quadrant and tan6 = a,/a,. The rectangle
with minimum area occurs when the angle 0 is in the third quadrant and
tan0=a;/a,.

Additional results are given as corollaries; proofs are left to the reader. Denote the
angles subtended from P by the sides of the rectangle by ¢;;= 2 A,PA,
See Ficurk 8.

COROLLARY 2.1. When the area of the rectangle is maximum, ¢+ gy =
Goz + by = 7.

Question: What is the relationship among the ¢,; when the area is minimum?

COROLLARY 2.2. The maximum area is given by a,a, + aya,, and the minimum area
is given by layay—aya,l. Thus, any set {ay,a,,as,a,} of distances from P to
consecutive vertices of a family of rectangles may be permuted, subject to L;_,(—1)'a}
= 0, without changing the maximum and minimum areas.

A second approach to finding these extrema is to use Lagrange multipliers. The
— = —
vectors A, P, PA;, and PA| can be combined to give

A, A=A, P+PA,; A,A =A,P+PA,.

Note that the (signed) area of the rectangle is the product of the first component of
—_— —
A, A, with the second component of A, A, and that both the second component of

= —
Ay A; and the first component of A, A must be 0 since A; and A, are on the
coordinate axes. The problem becomes: Minimize

a( 0, dog, b13) = (ayc0s 0 — agcos (6 + ¢y3))(agsin 0+ aysin (¢, — 6)),
subject to the constraints
aysin 0 =aysin (0+ ¢y3) and aycos 0=a,cos (P, —6).

Details are left to the readers (or their calculus classes).


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 71, NO. 4, OCTOBER 1998 291
REFERENCES

1. Marcus Baker, Solution to Geometry Problem 151, Amer. Math. Monthly 8 (1901), pp. 197-198.

2. R.J. Gregorac, A general 3-4-5 puzzle, European |. Combinatorics 17 (1996), p. 533.

3. Frank A. Griffin (proposer), G.B.M. Zerr et al. (solvers), Geometry Problem 151, Amer. Math. Monthly
8 (1901), p. 144.

4. Richard E. Pfiefer and Cathleen Van Hook, Circles, vectors and linear algebra, this MAGAZINE 66 (1993),
pp. 75-86.

5. Stanley Rabinowitz, Ptolemy’s Legacy (preliminary draft), MathPro Press, Westford, MA, 1994.

. George Salmon, A Treatise on Conic Sections, Longmans, Green, and Co., London, UK, 1879.

7. Marion Walter, Exploring a rectangle problem, this MAGAZINE 54 (1981), pp. 131-134.

[=2)

Counting Integer Triangles

NICHOLAS KRIER
BENNET MANVEL

Colorado State University
Ft. Collins, CO 80523-1874

Introduction How many triangles with integer sides have a given perimeter? This
elementary counting problem came up in a geometry class. As we soon found out, the
answer has been known for a long time. In rederiving that answer for ourselves we
found the Internet and Maple to be valuable tools. This note describes our experi-
ences in finding the number ¢, of congruence classes of triangles with integer sides
summing to n, which we will just call integer triangles.

Data stage Although we guessed that the answer to such a classical problem would
be known, we did not have a good idea where to look for it. So we began our attack on
the problem in the most primitive possible way, constructing small triangles. Obvi-
ously 1, 1,1 is the smallest integer triple for sides of a triangle, followed by 2,2, 1, then
2,2,2 and two triangles of perimeter 7: 3,2,2 and 3,3, 1. Continuing in this way, we
found one integer triangle of perimeter 8, three of perimeter 9, two of perimeter 10,
and four of perimeter 11.

These data suggested to us two possible integer sequences. One would list perime-
ters of all integer triangles, and begin 3,5,6,7,7,8,9,9,9,10,10,11,11,11,11. The
other would list the number of integer triangles of each perimeter, and so would begin
1,0,1,1,2,1,3,2,4. With these sequences in hand, we turned immediately to our
battered copy of N.J.A. Sloane’s classic Handbook of Integer Sequences. Unfortu-
nately, we came up empty. (We would not have come up empty if we had owned
the new Encyclopedia of Integer Sequences by N.J.A. Sloane and S. Plouffe.) So
we turned to our computer, submitting the sequence to Sloane (at AT&T Research)
by e-mail (address: sequences@research.att.com; subject: none; message:
lookup 1 0 1 1 2 1 3 2 4). We were quickly informed that the second of our
sequences was in fact Alcuin’s sequence, the coefficients in the power series expan-
sion of

7C3

(1—-22)(1—-x%)(1-x*)"

(1)
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In some sense, this solved our problem. We now guessed that the number of
integer triangles with perimeter n was the coefficient of x" in the expansion of
expression (1). But we did not know why that was the case. And we did not know
actual numerical values, beyond those given by the automated reply from Sloane’s
data base.

The reply from the sequence data base also included three references; two of them
([1] and [3]) were to articles that explained how the numbers ¢, can be computed. We
found the explanations in those articles more complex than the elegant expression (1)
warranted, so we looked for a more direct approach. We discovered two rather simple
explanations for why expression (1) works; these are presented in the next two
sections.

We also realized that an actual formula for the number of triangles with a given
integer perimeter could be obtained by finding the partial fraction expansion of
expression (1). Maple made this rather daunting task far more fun than it would
otherwise have been. We describe in the final section of this note the process we
followed to find the following formula for the number ¢, of integer triangles:

6n>+18n—1 arl 2n+3 c
L= ("D Tt (@)
where ¢ =7, —17,1, or 25, as n is congruent modulo 12 to (0 or 9), to (1,4,5, or 8),
to (2,7,10, or 11), or to (3 or 6).
Reference [1] shows that, in fact, the greatest integer function | x] and the nearest
integer function {x} can be used to write the numbers ¢, in the following way:

n? n
()13
Reference [2] establishes an even more user-friendly formula for ¢, namely
n’ o
{E} if n is even;
tn = (’I’l + 3)2 (2”)
{—} if n is odd.

n+ 2
4

(2)

48

Counting by threes For the rest of this note we denote the integer sides of our
triangle of perimeter n by a, b, and ¢, with a >b >c¢. Our first derivation of the
generating function (1) for the numbers ¢, begins with the following observation.

n ( _ l)(n+l)/ 2

LEMMA. Forn even, t,=t,_,. Fornodd, t, =t,_5 + ) 1

Proof. We note first that subtracting one from the length of each side of an a, b, ¢
triangle with perimeter n will usually result in an ¢ —1,b —1,¢ — 1 triangle with
perimeter n — 3. The triangle inequality requires that b + ¢ > a, so shrinking works if
(b-1D+c—-1D>@@-1) (or b+c>a+1) also holds. Thus shrinking will work
unless the triangle we start with has sides satisfying the equation b +c=a + 1. In
that case, however, the original perimeter is 2a + 1. So if the original perimeter is
even, t, =t, 5. If n is odd, then shrinking works for all @, b, ¢ summing to n except
in the case that b + ¢ =a + 1. With a +b + ¢ = n, this reduces to a =(n — 1) /2 and
b+c=(n+1)/2. Thus t, is equal to ¢,_; plus one for each solution to b +¢ =
(n+1)/2 with b and ¢ positive integers, b >c. Two examples will illustrate the
general case. If n =9 then b +¢ =550 ¢ could be 1 or 2. If n =11 then b + ¢ =6 so
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¢ could be 1 or 2 or 3. More generally, if n =1 (nod4) then b, ¢ can be chosen in
(n —1)/4 ways, and if n =3 (mod4), then b,c can be chosen in (n + 1)/4 ways.
This completes the proof.

Now suppose that t(x) is the generating function for the number of integer
triangles with perimeter n, so that

t(x) =ty +t x+tyx2+ .
Then
3t(x) =tox® +txt + x4 e
After subtracting, we find
(L—a®)t(x) =to+tix+ta2® + (1 — o) x® + (t, —t,)x* + (85— t5) 2" + .
Since t, =t =t, =0, the lemma above reduces the preceding equation to
(I=x®)t(x) =2 +x° + 227 +2x° + 3™ + 32" + -

=x®(14+2®)(1+2x* +3x% + -+ ) =2%(1 +x?) 5

1
(1=
therefore,
{(x) = x3(1+x?) _ x3
1=2)(1—-2)(1—-2>)(1+2*) (Q1-2?)(1—-x3%)(1—=x*)

Counting by constructing Expression (1) can be expressed rather less tidily as
B+t 2+ )T+t + a2+ ) (Tt + 28+ + ). (3)

The coefficient ¢, of x" in this expression is obtained by combining terms from the
four factors in every way that gives a total power of n. The x® factor encouraged us to
think of constructing triangles beginning with the 1,1, 1 triangle and adding various
amounts to the sides. We introduce the method we found for adding total lengths in
multiples of 2, 3, and 4 to arrive at all the different triangles by first describing it in
terms of taking lengths away.

The three complicated factors in the product correspond to three kinds of opera-
tions used to reduce a triangle. We reduce a given triangle with sides @, b, and ¢ (with
a>b>c)to the 1,1,1 triangle by repeating the following steps (we name each side
according to its original length):

1. Subtract one from each of the sides a and b.
2. Subtract one from each of the sides a, b, and c.
3. Subtract two from side @ and one from each of sides b and c.

In expression (3), the x® term corresponds to our objective, the 1,1,1 triangle. Our
choice of terms from the second, third, and fourth factors determines how many times
the steps 1, 2, and 3 above are applied to reduce a, b, ¢ to 1,1, 1. The remarkable fact
is that each integer triangle can be reduced using a uniquely calculable number of
each of these operations.

Example. We reduce a 14,12,7 triangle to the 1,1,1 triangle. First note that the
longest side is 2 larger than the second longest side. Thus we will need two uses of
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step 3, the only step that reduces the difference between the two longest sides. We
subtract 2,1,1 twice from 14,12,7 to produce a 10,10,5 triangle. The two (now
equal) longest sides are now 5 larger than the smallest side, so we use step 1 five times
to reduce to a 5,5, 5 triangle. Finally, we use step 2 four times to reduce to the 1,1, 1
triangle.

More generally, this sort of reduction must use step 1 exactly b — ¢ times, step 2
exactly ¢ —a +b — 1 times, and step 3 exactly ¢ — b times. Thus the a, b, ¢ integer
triangle, a > b > ¢, is counted in the coefficient of expression (3) that comes from the
product

23 2b=0) He=a+b=1) L 4a=b)

The triangle @, b, ¢ can be built up by adding to the edge lengths of the starting
triangle 1,1,1 the edge lengths of the following triangles, two of which are degener-
ate:

u =b — c copies of the “triangle” 1,1,0 (perimeter 2)
v=c—a+b—1 copies of the triangle 1,1, 1 (perimeter 3)
w =a — b copies of the “triangle” 2,1, 1 (perimeter 4)

The sides are added in the order specified to the sides to be made a, b, ¢, respectively.
Totalling the lengths placed on each side, we find the largest side has length
1+(b-c)+(c—a+b—1)+2a—b)=a. The next side has length 1 + (b —¢) +
(c—a+b—-1)+(a—b)=>b, and the last side has length 1+(c—a+b—1+
(a —b) = c. Notice that any triple of numbers a, b, ¢ with @ > b > ¢ that satisfies the
triangle inequality b + ¢ >a will produce a triple u,v,w of non-negative integers.
Thus every integer triangle contributes 1 to the appropriate coefficient of expression
(3). Conversely, any term t" = ¢3(¢2)*(¢+*)*(¢*)" in the expansion of expression (3)
determines sides
a=1+u+v+2w, b=14+u+v+w, and c=1+v+w

of an integer triangle, since a triple a, b, ¢ determined in this way satisfies ¢ >b > ¢

and b + ¢ > a. Thus the building-up process we have described corresponds exactly to
the terms of expression (3).

Example. The 14,12,7 triangle gives us the values b—c=5, c—a+b—1=4,
a—Db=2. So it contributes 1 to the term ¢3(¢+2)*(¢*)*(¢*)* in the product (3), which is
the term ¢*. Notice also how this connects with the reduction performed in the
example above.

The bijection between triangles with integer sides and partitions into 2’s, 3’s, and 4’s
with at least one 3, implicit in the generating function (1) and explicit in our mappings
between triples @, b, ¢ and u, v, w, has been observed before. In an exercise toward
the end of [6] (see page 281), interested readers can discover how this bijection is
related to free commutative monoids.

Final remarks Although the formula (2") is elegant, we wanted to derive,
directly from expression (1), an explicit formula for the number ¢, that did not
invoke the nearest integer or greatest integer functions. To find that formula,
we turned to Maple to expand (1) into partial fractions. The command was
convert (£, parfrac, x), where we had earlier defined £ to be expression (1).
The result was

-1 1 13 1 1 1 1 1

Zi_ 1 13 1 1 x+2 1 x+1
24 (x—1)°® 288x-1 16(x+1)2 32 x+1

1
9x2+x+1 82417

+
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For most of these terms, the coefficient of x" is clear from the general binomial
theorem. Thus the first four terms give the following coefficient of x":

1 n+2 13 1 n 1 n

2" 3%) -~ (DD - 55"

The last two terms, which involve irreducible quadratics, are trickier. They may be
handled by noting that the roots are complex third and fourth roots of unity,
respectively (this explains the modulo 12 format of our formula (2)). But Maple
handles them by finding Taylor expansions. For the next to last term, the command
taylor ((x+2) / (x"2+x+1), x=0, 13) yields

2—x—x?4+2x% —at —a® + 220 —xT — ¥+ 2x% — 210 — 2 + 242 + O(x"®).

This shows that the coefficient of (x +2)/(x* +x + 1) is 2 if n is divisible by 3 and
—1 otherwise. The coefficients of (x + 1)/(x® + 1) can be found with Maple, by use
of complex roots, or by shifting the expansion of 1/(x? + 1). They turn out to be —1
if nis 0 or 1 modulo 4, and +1 otherwise. Combining all of this information, we
arrived at the formula for ¢, given in (2), above.

For some interesting old problems on sharing full and partially full barrels, related
to counting integer triangles, see pages 150 to 165 of Olivastro’s book [4]. Singmaster’s
paper [5] is Olivastro’s source; it also contains interesting connections between
counting triangles and partitions of integers into three parts. For another explanation
of the connection between partitions and the number of triangles, which is more in
the spirit of our approach, see the nice exposition by Honsberger [2], which expands
on [1]. For related applications of generating functions, see [7].
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Math Bite: On the Nowhere Differentiability
of the Coordinate Functions of the Iséki Curve

Kiyoshi Iséki modified Schoenberg’s space-filling curve [1] to obtain a continuous
curve that passes through every point of the X -dimensional unit cube [0, 1] X [0, 1] X
[0,1]1 X ... (see [2] and [3]). The coordinate functions of Iséki’s curve are defined as
follows:

p(32"—1(2k+1) 'lt)
2k

1 0
e(t) =35 X ,0<t<1,n=1,2.3,...,
k=0

where the 2-periodic function p is defined for ¢ €[0,1] by

0 if t€[0,1/3),
p(t)={3t—1 ifte[1/3,2/3),
1 if t[2/3,1],

and elsewhere by p(—¢) =p(t) and p(t +2) = p(t).

To show that these coordinate functions are nowhere differentiable in (0, 1), let
k 0= [32"7¢] (where [ ] denotes the greatest integer function), and consider the two
sequences

1

a andbq=aq+?33,,—(7.

=1
q 32uq

The line of reasoning employed in our proof of the nowhere differentiability of the
coordinate functions of the Schoenberg curve (see [4]) shows that

b,)— b)) —
lim sup alt 2) — j::( a) = o or'liminf il }79?] — ;D:( a) = —oo,

whence the desired result follows. To handle the endpoints, take

1 1
aq=0,bq=watt=0;al=l—@,bl=latt=l.
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The Sufficient Condition for the Differentiability
of Functions of Several Variables

XU PINGYA

Nanjing College of Electric Power
Nanjing 210013
People’s Republic of China

In courses on several variable calculus, the following observations about differentia-
bility are made. Given a function f:R*— R, it is only a necessary condition for
differentiability at the point P that both partial derivatives exist at P. It has been
observed in [1], [2], and [3] that if both partial derivatives exist and one of them is
continuous at the point P, then f is differentiable at P. An example given in [3] shows
that the corresponding assertion is not generally true for a function of n variables
when n > 3. Specifically, for n > 3, the function need not be differentiable at the
point even if all n partial derivatives exist and one of them is continuous at the point.

We will prove the following theorem.

THEOREM 1. Suppose that the function f: R"™ — R has the property that all n partial
derivatives exist at the point P in R" and n—1 of the partial derivatives are
continuous at P. Then f is differentiable at P.

After the proof we provide an example to show that the conclusion need not hold if
two or more of the partial derivatives are discontinuous at P.

Proof. Consider P =(x, ..., x,) and suppose that all the partial derivatives f; exist
at P and that all of them are continuous at P except possibly f;. Then

: f(xl""’xn—l’xn+Axrl)_f(xl"“’xn—l’xn) ’
Allrgo Axn =fn(P)

and so
" _ " " [ .
f(xl""’xn—l’ln_'_Axn) f(:xl"“’xn—l’ln)_fn(P)Axn-i_‘enAxn’
where lim,, _, &, =0. By Lagrange’s mean value theorem,
f(xy, % x,HAx,, ., x, +Ax,)
—f(xy o x, v FAY L1, AR,
=fi(xp, o & FAX g, x, T A, ) Ay,

where & is between x,; and x, + Ax; for i=1,2,...,n— 1.

Let p= \/(Ax1)2 + -+ +(Ax,)”. Since f; is continuous at P, we have

12

gi_r)t(})ﬂ(xl,...,xi_l, X TAx L x, Y Ax) =f(P),
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so that
filxy,oox 1, & x YA, x, HAx) =f/(P) + &,
where limp_,oai=0 fori=1,2,...,n— 1. Hence
flxy, oo x g x, +Ax, ... x, +Ax,)
—f(xy,. %, %, %0 FAx L., x, T AX))

=fi(xy,...,x_ 1, & x50 T AX, .., x, T Ax,)Ax,

=f/(P)Ax; + gAx,,
and therefore

flx,+Axy,. .o x, +Ax,) —f(xq,...,%,)

n
Y (f(xy,oox g, %+ Axy, o x, + Ax)
i=1

—f(xy, s Xy %y, Xy FAX g, x, +AX))

'éfi’(P)Ax,. + _il gAx;, = ._ilfi’(P)Ax,. +o(p).

This shows that f is differentiable at P and completes the proof of the theorem.

Now, for each n>2, we give an example showing that the theorem no longer
remains true if more than one of the partials is allowed to be discontinuous. For
n = 2, many readers will find the example familiar. Let

X1%g 2 2 g2 42
+aZ+ o tx if x24+x2+#0
,—2 ) n» 1 2
f(xlww’ xn)= xl+x2
0, if x7 +x5=0.
At the origin, we have
Ax,0,...,0)
10.....0) = lim Jl_;_’___’__=0;
fi( ) Ar0 Ax
for xi+x2#0,
3 3
x k
im  fi= lim T
x,-0, xg=kt, 1,0, xg=kx, (x%+x§)3/2 (]_+k2)3/2

for each k. Thus f] is discontinuous at the origin. Similarly, f is discontinuous at the
origin. Straightforward calculations show that the remaining partial derivatives are
continuous at the origin. When the point (Ax;, Ax,,...,Ax,) tends to the origin
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along the line x; =x,= - =x,, we see that

1 Axlez " 2
— Ax.
P1V(Ax)? + (Ax,) +i§3( )
(A*"‘l)2 +(n—2)(Ax1)2_) 1

Ven(Ax)*  Vn(ax)®  V2n

This shows that function f is not differentiable at the origin.

# 0.
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Math Bite: Equality of Limits in Ratio and Root Tests

Relations among various tests for convergence of series arose in the note [1] and its
corrigendum. For the convergence of series ¥ _,a, with positive terms, two well-
known tests are as follows:

D’ALEMBERT’S RATIO TEST. Suppose that lim, _,,“2*L = L. Then Ya, converges if
L <1 and diverges if L > 1.

CAUCHY’S ROOT TEST. Suppose that lim, _, ,a"/" = M. Then Xa, converges if M < 1
and diverges if M > 1.

We show—using the tests themselves—that if the limits L and M exist, they must
be equal. To this end, suppose that L <M. (The argument for the case M <L is
similar.) Choose a real number k such that L <k <M.

Now consider the series £b,, where b, =a, /k". Then we have

b
fm At = Fcr bu b=

noo by k noo

The first limit implies that b, converges; the second, that ©b, diverges. This is a
contradiction.
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along the line x; =x,= - =x,, we see that
Ax,A =

% x; = 5+ Z(Axi)2
V(Ax)’ +(Ax,)> i3

C_(Aw) | (-9(@x)
\/2n(Ax1)4 \/n(Axl)2 Van
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The game Lights Out, commercially available from Tiger Electronics, consists of a
5X 5 array of 25 lighted buttons; each light may be on or off. A move consists of
pushing a single button. Doing so changes the on/off state of the light on the button
pushed, and of all its vertical and horizontal neighbors. Given an initial configuration
of lights which are turned on, the object is to turn out all the lights.

A complete strategy for the game can be obtained using linear algebra, requiring
only knowledge of Gauss-Jordan elimination and some facts about the column and
null spaces of a matrix. All calculations are done modulo 2.

We make some initial observations.

1. Pushing a button twice is equivalent to not pushing it at all. Hence, for any given
configuration, we need consider only solutions in which each button is pushed
no more than once.

2. The state of a button depends only on how often (whether even or odd) it and its
neighbors have been pushed. Hence, the order in which the buttons are pushed
is immaterial.

We will represent the state of each light by an element of Z,, the field of integers
modulo 2; 1 for on, and 0 for off. We will denote the state of the light in the ith row
and jth_)column by b, j» an element of Z,, and the entire array by a 25 X 1 column
vector b, with entries ordered as follows:

N T
b= (bl,l’ b1,2>"‘>b1,5’ b2,1> bs,s)

(T stands for transpose). We will call such a vector a configuration of the array.
Pressing a button changes the configuration vector by adding to b a vector that has
I's at the location of the button and its neighbors and 0’s elsewhere. The order of
pushing buttons makes no differences, so we may represent a strategy by another
25 X 1 column vector ¥, where x; ; is 1 if the (i, /) button is to be pushed, and 0
otherwise. .
If we start with all the lights out and configuration b is obtained by strategy «, then

bl,l =2y, F % 9T %1,
bl,z =%, X T x 3%,

bl,S =X 9T X 3FTx 4T Xy
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More generally, it is straightforward to check that the result b of the strategy 7 is the
matrix product AY = b, where A is the 25 X 25 matrix:

B I O O O
I B I O O
A=10 I B I O
O O I B 1
O O O I B

here I is the 5 X 5 identity matrix, O is the 5 X 5 matrix of all zeros, and B is the
matrix

1 1 0 0 0
1 1 1 0 0
B=(0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

Note that B is a symmetric matrix, and so A is symmetric too.
Given an arbitrary configuration b, we will say that b is winnable if there exists a
strategy ¥ to turn out all the lights in b. The key observation is as follows:

If a set of buttons is pushed to create a configuration, then starting with
that configuration and pressing the same set of buttons will turn the lights
out.

That is, to find a strategy to turn out all the lights in b, we need to solve b = A%. Thus,
a configuration b is winnable if and only if it belongs to the column space of the
matrix A; we denote the latter by Col( A).

To analyze Col(A), we perform Gauss-Jordan elimination on A. This would be
tedious to perform by hand, but is easier using any computer algebra system capable
of handling matrices with entries from Z,; Maple or Mathematica will do the job.
Gauss-Jordan will yield RA = E, where E is the Gauss-Jordan echelon form, and R is
the product of the elementary matrices which perform the reducing row operations.
The matrices R and E are rather formidable, and not particularly illuminating. We
will not display them here but invite the reader to calculate them using a favorite
computer algebra system.

Having done this calculation, we see that the matrix E is of rank 23, with two free
variables x5 , and x5 5 in the last two columns. Indeed, the last two columns of E are

(0,1,1,1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,1,0,1, l,O,O)T

and
(1,0,1,0,1,1,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0, l,O,O)T.

Now A is a symmetric matrix, and so Col(A) equals the row space of A, denoted
Row( A). But Row( A) is the orthogonal complement of the null space of A (denoted
Null(A)), which in turn equals Null(E). So, to describe Col(A), we need only
determine a basis for Null(E).

Since E is in Gauss-Jordan echelon form, it is easy to find an orthogonal basis for
Null(E) by examining the last two columns of E:

n,=(0,1,1,1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,1,0,1,1, l,O)T
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and
i, =(1,0,1,0,1,1,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1,0,1)".

Putting this together, we have the following:

THEOREM 1. A configuration b is winnable if and only if bis perpendicular to the
two vectors 1, and 1.

Therefore, to see if a configuration is winnable, we simply compute the dot product
of that configuration with 7, and 7,. For example, consider the configurations below
(which we have shaped as 5 X 5 arrays):

01 0 0 O 1 0 0 1 O
L 100 1 0 0 0 0 1 0 O
=10 1 0 1 O g=10 1 1 0 1

0 1 1 0 1 01 0 0 O

1 0 0 0 O 1 0 0 0 0

Then f is winnable, while g is not (g is not perpendicular to 7,).

Since the dimension of the null space is 2, and the scalar field is Z,, it follows from
this theorem that of the 2% possible configurations, only one-fourth of them are
winnable. Furthermore, if b is a winnable configuration with winning strategy ¥, then
X+, X+ 1, and ¥+ nl + 1, are also winning strategies.

Suppose now that b is a winnable configuration. We would like to find one of the
four strategies X for which Ax'= b. But since we need only find one solution, we may
as well set the two free variables x5, and x5 5 equal to zero. In this case ¥ = Ex. So,
= EX = RAT = RD. Explicitly, we have a winning strategy given by ¥= Rb. We thus
have the following theorem:

THEOREM 2. Suppose that b is a winnable configuration. Then the four winning
strategies for b are

Rb, Rb+1i,, Rb+n,, Rb+ii, +ii,.

We observed above that the configuration fis winnable. To find a winning strategy,
we compute Rf (where we reshape f as a column vector):

Rf=(0,0,1,1,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0)".

This theorem gives our solutions in closed, computable form. Admittedly, this
computation is tedious to do by hand, preserving the game’s appeal. We can do better
than completing the entire computation, if we proceed algorithmically. For suppose
we only compute the strategy for the first row (that is, the first five entries in the
column Rb). We then carry out these moves; Theorem 2 says that no more moves in
the first row are necessary. We then look to see if there are any lights on in the first
row. The only way to turn these out, using moves in the last four rows, is to push the
button immediately below each light which is on. Having now determined a strategy
for the first two rows, we then move on to each successive row in the same way.

Lights Out can be generalized to an n X n array of lights. One can proceed in a
manner similar to the way we solved the 5X5 case. What is interesting is the
dimension of the null space of the corresponding matrices for various values of n
(we call these n” X n® matrices A,); the table below summarizes the results.
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Of course if the dimension of the null space is zero, every configuration is winnable
and the solution unique (if no buttons are pressed more than once). We haven’t spent
any time trying to solve some of these larger puzzles, but they must be very difficult!

Dimension Dimension
n of Null(A,) n of Null(A,)
2 0 12 0
3 0 13 0
4 4 14 4
5 2 15 0
6 0 16 8
7 0 17 2
8 0 18 0
9 8 19 16
10 0 20 0
11 6 21 0

A further natural generalization is to consider Lights Out on a torus; that is, lights
on the top row are considered neighbors of lights on the bottom row, and likewise for
the leftmost and rightmost columns. This “wrap around” changes the matrices A, of
course. (We leave this as an exercise for the reader.) Here are some corresponding
results for the game on tori of various sizes:

Dimension Dimension
n of Null(A,) n of Null(A,)
2 0 12 16
3 4 13 0
4 0 14 0
5 8 15 12
6 8 16 0
7 0 17 16
8 0 18 8
9 4 19 0
10 16 20 32
11 0 21 4

Acknowledgment Our thanks to our colleague John Watkins for his suggestions on writing this paper.
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Introduction One of the most remarkable and surprising results in iteration theory
is the fact that a continuous function from a closed interval to itself that has a point of
period three must have points of period n for all natural numbers n. An excellent
description and proof of this result is given in [2]. The presentation in [2] is especially
suitable for students since it requires nothing more advanced than the intermediate
value theorem, and uses as its main illustrative example the elementary piecewise
linear function given by

x+ 3,
2—2x,

(1)

IA
=
A A
— o]

f(x) =

o= O
IA
=

It is not hard to establish the fact that this function has a point of period three since
fO) =1, f(3)=1and f(1) = 0. Tt is less obvious that there are points of period n for
all other n. Although [2] gives arguments to show that these points must exist, it does
not give any specific examples of such points. In this brief note we will show how a
reformulation of the definition of f in binary notation makes it possible to determine
in a very straightforward manner periodic points of any period.

Periodic points Given x in [0, 1], let x = .a, a, a,... be the binary representation

of x (for x =1, let @, =1 for all k). Note that if 0 <x < 3, then a; = 0. This means
that the first half of the definition of f can be rewritten as

f(Oayay...)=1a, a,....

If <x<1, then a; =1, so the second part of the definition of f becomes

f(layay...)=2—-1l.ayaza,...=1—.a,a5a,... =.dydyd,...,where aj =1—aq,
for all k.
Thus in binary notation, (1) can be expressed as follows:
dagay... if ¢, =0,
flaasas..) = dydydy... ifa =1

Note that, in general, (@})' = a;. This means that a number with binary representa-
tion .10aga, ... will have the property that

f2(10aza,...) = .asay.... (2)

This fact will prove useful in the following.

Our goal is to determine for each natural number n an example of a point x that
satisfies the condition f"(x)=x and f*(x) #x for k <n.

A consequence of (2) is that the point x =.101010--- = .10 satisfies f*(x) =x, but
a check shows that, in fact, this point has period 1, not period 2. To get a point of
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period 2 we can start with @, = 0 and note that

f2(0agay...)=.dydyd,.... 3)

Thus f?(x) =x provided @, =0, a3 =a,, d)=as,..., which gives x=.010101 -+
= .01 as a point of period 2.

Combining (2) and (3) it is possible to find periodic points of any even order. For
example, to get a point of period 4 we set a, =1 and a5 =0 in (3). This gives
£4(001a, as...)=f*(10d, ds...)=.d, ds.... Thus x =.001la, as... satisfies f*(x)
=y provided a; =0, a5=0, ag=1,.... This yields x=.001110, which a quick
check shows does not satisfy f*(x) =x for k <4, so x does have period 4.

Continuing, we can start with x =.001a, a5... and set ¢, =1 and a5 = 0. Solving
f8(x) =x we get x =.00I0111010 as a point of period 6.

In general, this technique yields a point of period 2+ 2k of the form
x=.0a;...a3.1d, ... dy, where a;=0if jis odd and a;=1if j is even, 1 <j <2k.

The above approach can be adlapted to find points of odd period. For example,
if we set ay = C in (3) we get

f3(00asa,...)=f(ldsd,...) = .aza,.... (4)

Note that an immediate consequence of (4) is that zero is a point of period 3. To
get a point of period 5, we set a;=1 and a,=0 and use (2) to obtain
£3(0010as ag...) = .asag.... Thus x =.0010a5aq... satisfies f°(x) =x provided
a5=0, a3=0, a;=1,... . This gives x =.0010.

In general, this procedure yields a point of period 3+ 2k of the form
x=.00a,...ay, where a;=11if j is odd and a; =0 if j is even, 1 <j < 2k.

This approach of using binary digits to determine periodic points can also be used
for the “tent” function, i.e., the function from [0, 1] to itself given by

2x, 0<x<3i
2-2x, 3<x<l

f(x)={

For this function, the n'™ iterate of f can be expressed in binary notation by

. Ay 1Gpyg s ifa,=0,
f(.alaz...)={ fa =1

! !
Api1lnty -

Thus any number that can be represented in base two in the form .a, ... a,, where
a, =0, is periodic. (The period may be less than n; e.g., .10 has period 1.)

In addition to exhibiting periodic points, these binary representations can be used
to illustrate such properties as sensitivity to initial conditions. One of the main
advantages of this digital approach is that it is suitable not only as the basis for a more
extensive discussion of iteration theory, but also as a stand-alone glimpse of some of
the rich dynamics exhibited by some very elementary functions.
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Introduction Let {f;} be a sequence of functions that converges pointwise on an
interval I to a function f and suppose that each of the functions f} is continuous at a
point ¢ € I. Must the limit function f be continuous at ¢? It is not difficult to find
examples to show that the answer is no. Something more than pointwise convergence
is required to guarantee that the limit function inherits the property of continuity. The
simplest sufficient condition is uniform convergence, but this requirement is actually
much stronger than necessary. The purpose of this note is to find the minimum
requirement to add to pointwise convergence that will guarantee continuity of the
limit function.

Examples To say that {f;} converges pointwise to f on I means that the sequence
{fi(x)} converges to f(x) for each x € I. Consider the following explicit examples, all
on the interval [0, 1]:

1. filx)=x/k; flx)=0.
2. filx) =sin(kmx)/k; f(x)=0.
k?x  if0<x<1/k, 0 if x=0,
5 fk(’C):{l/x if1/k<x <1, f(x)={l/x if0<x<1.
Caesy - {0 B9z
kx if0<x<1/k,
5 filx)={2—ke ifl/k<x<2/k, f(x)=0.
0 ifo/k <x <2

We leave it to the reader to verify that each sequence {f;} converges pointwise on
[0,1] to the corresponding f. (Sketching a few graphs of the f}’s gives a graphical
sense of the convergence in each case.) All of the functions f; are continuous on
[0, 1], but the limit function in Example 3 is not continuous at 0, and the limit function
in Example 4 is not continuous at 1.

In Example 4, the limit function f is continuous at each point of [0, 1); it fails to be
continuous only at a single point. However, once it is known that “bad” behavior
appears at one point, it is possible to extend the effect. Consider, for instance, the
sequence fi(x) = cos?>*(47x) on the interval [0,1]. Basic properties of the cosine
function imply that the limit function f is identically zero on [0, 1] except on the set
{0,1/4,1/2,3/4, 1}, where f(x)=1. Thus the pointwise limit function has five
points of discontinuity, even though each f; is continuous on [0, 1]. Similarly, if
filx) = cos?¥(1000!7x), then the limit function will have discontinuities at each point
x € [0, 1] with the property that 1000!x is an integer—and there are quite a few such
points. In fact, the situation can be made even worse. The limit function in the last
example has many—Dbut only finitely many—points of discontinuity. Using techniques
beyond the scope of this note (some ideas from measure theory), one can show that
the pointwise limit of a sequence of continuous functions can have infinitely many,
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even uncountably many, discontinuities. On the other hand, it is known that the
pointwise limit of a sequence of continuous functions (such a function is said to be of
Baire class one) must have some points of continuity. For an elementary discussion of
this result, see [1].

Uniform convergence Suppose that {f,} converges pointwise to f on I. For x €I
and e> 0, there exists a positive integer K(e, x) such that |f;(x) —f(x)| < e for all
k> K(e, x). For a fixed but arbitrary €> 0, the integer K(e, x) will, in general,
depend on «x. If, for each fixed €> 0, the integer K(e, x) can be chosen indepen-
dently of x on an interval I, then the convergence is uniform. More precisely, the
sequence {f;} converges uniformly to f on I if for each e€> 0 there exists a positive
integer K such that |f,(x) —f(x)| < € for all x €1 and for all k > K.

The sequences in Examples 1 and 2 converge uniformly on [0, 1]; those in Examples
3, 4, and 5 do not. (Proving these statements is good practice with the definition.) The
following theorem and proof are well known; we include them for comparison to
Theorem 2.

THEOREM 1. Suppose that {f;} converges pointwise to a function f on an interval I,
let ¢ €1, and assume that each f, is continuous at c. If {f} converges uniformly to f
on I, then f is continuous at c.

Proof. Let €> 0. Since {f;} converges uniformly to f on I, there exists a positive
integer p such that |f,(x) — f(x)| <e€/3 for all x €. Since f, is continuous at c,
there exists 8 > 0 such that pr(x) —fp(c)l <e/3 for all x €1 that satisfy |x —¢| < 8.
For these same values of x,

|(x) =f() | <|f(x) = f,()] +]£,(x) = £, ()] +[,(e) =f(e)]
<€e/3+€/3+€/3=¢€.

Hence, the function f is continuous at c.

Quasi-uniform convergence Example 5 illustrates that the limit function may be
continuous even when the convergence is not uniform. It is easy to verify that this
sequence converges uniformly on the interval [a, 1] for each a > 0; the difficulty lies
at 0. Although 0 is the only “problem point,” this non-uniform effect can be extended
to an infinite number of points as mentioned earlier. In other words, the limit function
can be continuous even when the convergence is far from uniform. Even without an
example, we can see from the preceding proof that the assumption of uniform
convergence is overkill by looking closely at the key inequality

|£(2) = f() <[ f(x) = ()| +|£,(x) = £, ()| +]f, () =f() .

The last term can be made small by the pointwise convergence at ¢. The middle term
can be made small for x near ¢ by the continuity of f, at c. The first term also needs
to be small for all x near c—here is where something stronger than pointwise
convergence is required. However, we do not need |f(x) —f,(x)| <€ for all k>K
and for all x € 1. We need only that |f(x) —fi(x)| < e when k=p and for all x €1
that are near ¢. These considerations lead to the following definition:

DEFINITION. Let {f;} be a sequence of functions defined on an interval I, such that
{fi} converges pointwise to a function f defined on 1. The sequence {f,} converges
quasi-uniformly to f at the point ¢ € I if for each €> 0 and positive integer K there
exist 6> 0 and a positive integer m > K such that |f,,(x) — f(x)| < € for all x € I that
satisfy |x — ¢ < 8.
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It is not difficult to show that the sequence in Example 5 converges quasi-uniformly
at 0. The foregoing discussion shows that quasi-uniform convergence is sufficient to
guarantee that the limit function is continuous; in fact, quasi-uniform convergence is
necessary as well.

THEOREM 2. Suppose that {f,} converges pointwise to a function f on an interval I,
let c €1, and assume that each f is continuous at c. Then {f,} converges quasi-uni-
formly to f at ¢ if and only if f is continuous at c.

Proof. Suppose first that {f;} converges quasi-uniformly to f at ¢ and let > 0.
Choose a positive integer K such that |f,(c) —f(c)l < €/3 for all k> K. Since {f,}
converges quasi-uniformly to f at ¢, there exist 6> 0 and a positive integer m > K
such that |f,.(x) —f(x)|<e/3 for all x €I that satisfy |x—c|<8. Since f, is

m

continuous at ¢, there exists a positive number 8, < § such that |f,,(x) —f,.(c)| < €/3
for all x €1 that satisfy |x —¢| < 8. For these same values of x,

| () =f ()| <[ f(x) =fu() | +1£u(x) = fu(@) [ +] () =f(0)]

<e/3+€/3+€/3=¢€.

Hence, the function f is continuous at c.

Now suppose that f is continuous at c. Let € >0 and let K be a positive integer.
Since {f;(c)} converges to f(c), there exists an integer m > K such that |, (c) — f(c)|
< €/3. Since both f,, and f are continuous at ¢, there exists 8> 0 such that for all
x €1 that satisfy |x —¢| < 8,

|fu(x) =f(e)|<e/3  and  [f(x) —f(c)| <e/3.

It follows that

| £u(x) =f() | < £u(x) = fu(@) [ +[£u(e) =f(e) | +]f(e) = f(x)]
<e/3+€/3+€/3=¢€

for all x €1 that satisfy |x —c| < 8. Hence, the sequence {f}} converges quasi-uni-
formly to f at c.

Note An interesting discussion of the history of this idea can be found in [2].
Chapter 2 of [3] also considers several ideas related to the convergence properties of
séquences of continuous functions.

REFERENCES

1. R. A. Gordon, Real Analysis, A First Course, Addison-Wesley, Reading, MA, 1997.

2. G. H. Hardy, Sir George Stokes and the concept of uniform convergence, Proc. Camb. Phil. Soc. 19
(1918), 148-156.

3. E. W. Hobson, The Theory of Functions of a Real Variable, Vol. 2, Cambridge University Press,
Cambridge, UK, 1926.



http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 71, NO. 4, OCTOBER 1998 309

Cusps on Wheels on Wheels on Wheels

PETER GIBLIN

University of Liverpool
Liverpool L69 3BX
England

MATTHEW TROUT
Cross Hall High School
Ormskirk, Lancashire
England

We were intrigued by the article by Frank Farris [1] in this MAGAZINE, showing how
to connect curves produced by a trio of rotating wheels with Fourier series. We drew
some of Farris’s curves and observed that some had cusps, and in this note we
investigate the conditions that make this happen.

Consider the family of curves

(%) =e”+dileq”+di26_"”, (1)

where d,, d, are real, and ¢, r are positive integers—this makes the curve close up at
t = 2. We ask: For which ¢, r,d,, d,, does the curve given by (1) have cusps and,
when it does, how many are there? We begin by changing variables and turning the
question into one about intersecting circles in the plane.

Differentiating (1) with respect to ¢ and equating this to zero gives the condition for
the curve parametrized by f to have singularities, which will usually be cusps. After
cancelling through by e*, we arrive at an equation of the form

. LT )
1+ aet™ = pellz 0, (2)
where new variables a, m, b, n are related to those above by

n—1
d1=m+l, g=m+1, d2=nb , r=n —1,

so that m is an integer > 0 and n is an integer > 2. We shall now concentrate on (2),
in which we take a, b real and > 0.

Of course (2) just expresses the fact that two circles, one radius b centered at
the origin and the other radius a centered at the complex point 1, intersect, as in
Ficure 1(). Note that, since a,b determine this figure, it is clear that the marked
angles may not have the form mt and 2 —nt for the same ¢ and integers m and n. So

we need to ask for values of a,b which do allow integer values to be chosen for m
and n, and, for such a, b we want to find the number of possible ¢, each giving a cusp
on the curve parametrized by f. It is also possible that for the same t both
intersections of the circles allow integral values of m and n, in which case we can
expect the cusps arising from each of the intersection points to combine on the same
curve.
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b a
mt
(M) (ii)
ﬂ 2
& )
(i)
FIGURE 1

(i) The general setup for finding cusps from intersections of two circles;
(i) and (iii) two special cases where m, n can be chosen integral.

Here is an example where m and n can be chosen to be integral. In Ficure 1(ii) the

- 2

circles are of unit radius (@ =b = 1) and they intersect at the points (é, + ﬁ), SO
that, for integers k, [, k', ', we have, for the upper and lower intersection respectively,

2
mt=T7T+2k7T, nt=%+2lﬂ', resp.mt=4—?z7+2k’77, nt=5%+2l'77. (3)

Hence

m _ 4+12k 8+ 12Kk’ .
n_ 1+120° 5+120 (4)

Suppose we select any integers k,/ and then choose integers m, n with m/n given
by the first of the above ratios. The curve (1) given by these m, n and a=1, b=1
will then have cusps corresponding to the upper intersection of the two circles. How
many cusps? To answer this we want to know, for these fixed values of m and n, how
many values of ¢ between 0 and 27 satisfy the first two equations of (3) for some kL.
This number is easily checked to be the greatest common divisor (m, n).

We can also select any integers k', I and then choose m and n with m /n equal to
the second of the ratios in (4). The resulting curve (1), with @ =b =1, will have
(m, n) cusps corresponding to the lower of the two intersections of the circles. In this
example, it happens that choosing k,! is actually the same as choosing k',l: in fact
taking k' = —3 — 7k, I’ = —1 — 7l takes the second fraction to the first, showing that
any m, n which create cusps from the upper intersection automatically create cusps
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a=1,b=1, m=4,n=13 a=1,b=1,m=8,n=5
FIGURE 2
Two examples with a =b = 1.

from the lower intersection. The result is always a bilaterally symmetric curve with
2(m, n) cusps. For example, taking m =4, n =13 or m = 8,n =5 gives the curves in
Ficure 2.

Incidentally, it is easy to check that, if m is even and n is odd, then f(m—1¢)=
— f(t), resulting in bilateral symmetry about the y-axis. Similarly, if m and n are
both even, then f(ar+¢)= —f(t), resulting in rotational symmetry with angle
about the origin.

Here is an example where m,n can be chosen integral, but the two intersection
points of the circles do not necessarily correspond to the same choice of m and n.
Consider Ficure 1(iii), where we have a =2, b =3 and

2
mt = Tﬂ-+2kﬂ', nt =2l

for the upper intersection, and

4
mt = Tﬂ- +2k'r, nt=w+2nw

for the lower intersection. As before, k,l,k',l' are integers. Then

m_l—l—Sk 4 + 6k’
n 3 % 3tel-

In this case it is not true that the m,n arising from a choice of k, ! always match those
arising from a choice of k’,I’. In fact starting with k,! we can find k',l’ giving the
same ratio m/n if and only if the following holds. We must have k odd; let
s = 3(1 + 3k). Then the largest power of 2 in s must be no less than the largest power
of 2in l. For example, if k =5 then s = 8 so the power of 2 in | must not exceed 3.
So taking k=5,1=8, 2=32=2 will give a bilaterally symmetrical curve with
2(m, n) cusps. See Ficure 3(left) for the case m =2, n = 3. On the other hand taking
k=51=16, 2= =1 we get a curve with rotational symmetry and (m, n) cusps.
See Ficure 3(right) for the case m =2, n = 6.

Question What exactly distinguishes the two cases just considered? How can we
predict whether both intersection points of the circle will be “used,” thereby creating
2(m, n) cusps?
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a=2,b=1732, m=2,n=3 a=2,b=1732, m=2,n=6
FIGURE 3
Two examples with a = 2, b = /3.

Another approach is to choose integers m and n in advance and find all compatible
values of a and b. We simply equate coordinates at an intersection of the circles, and
solve for a, b. Writing u =mt, v =nt we obtain

_ ___ cosv b= — sinu
cos(u +v)”’ cos(u +v)

Thus given m, n, we obtain all possible values of a,b giving cusps by choosing u,v
with w/v=m/n and finding a, b from the formulae.
For example, let us choose m =2, n =4, so that v = 2u, and we get

cos2u b= sinu
cos3u ’ cos3u

Suppose for example that @ =3. We can find all possible « using a numerical
equation solver and substitute to find the corresponding b. In fact the latter come to
approximately

+2.15, £3.06, +3.88.

Note that one value is very close to b = 3; however it is not hard to show that when
m =2, n =4 we cannot have ¢ =b and still have cusps.

Z 4
GG

b=3.06 b=35 b=3.88

FIGURE 4
Various curves with @ = 3, m = 2, n = 4; the first, third and fifth have two cusps.
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Ficure 4 shows the curves corresponding to various values of b which include the
three positive ones giving cusps. Thus we can see how the cusps evolve from smooth
curves in the family.
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The Telescoping Series in Perspective

MARC FRANTZ
Indiana University — Purdue University Indianapolis
Indianapolis, IN 46202-3216

The telescoping series
- 1
kgl k(k+1)
gets its name because the sum of the first n terms collapses:

oo n (1 1 ) 1
=Y (- |=1-—.
k§1k(k+1) El kK k+1 nt1

We conclude, letting n — o, that the series converges to 1. The telescoping series is
more than just an algebraic curiosity! In fact, we see examples of it almost every day.
One is shown in Ficure 1.

Ficure 1 shows that the apparent horizontal separations a, of the telephone poles
satisfy (assuming infinitely many poles) 7 _,a, = S. This series turns out, in fact, to

a a, a, i o $on oo 3

FIGURE 1 FIGURE 2
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be a version of the telescoping series. For simplicity, we’ll consider the special case
shown in Ficure 2. The idea behind a perspective drawing (Ficure 2) is that a viewer,
seen from above, stands in front of a “picture plane” that in this case is perpendicular
to the ground and contains the x-axis. The viewer uses only one eye, and thus is
idealized as a single point. As light rays travel in straight lines from objects in the real
world to the viewer’s eye, they pierce the picture plane, leaving behind appropriately
colored dots that, taken together, depict the scene.

For convenience, we take as our unit of measure the (uniform) separation between
the telephone poles, and we locate the picture plane and the viewer as shown in
Ficure 2. For n > 1, the use of similar triangles shows that the x-coordinate x,, of the
image of the nth pole satisfies

x, l—=x,

Xn _ _ n
n - 1 WThnFile

Thus, for n > 1, the nth gap between x,_; and x, has width a,, where

1

¢ 1T e+ 1)

n X, —X

Moreover, comparing Ficure 2 to Ficure 1 shows that S =1: the row of telephone
poles appears to vanish precisely when the viewer looks straight ahead.

Proof Without Words: The Area of a Right Triangle

The area of a right triangle is 3 (hypotenuse)® if and only if one acute angle is 5.

—KvraRA PINTER
H — 6729 Szecep
Szicony u. 41
HuNcary
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GEORGE T. GILBERT, Editor

Texas Christian University

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors

Texas Christian University

Proposals

To be considered for publication, solutions
should be received by March 1, 1999.

1554. Proposed by Howard Cary Morris, Germantown, Tennessee.

For 0 <r <1, find the volume V,(r) of

{(xl,...,xn) € [O,I]n:iljxiST}.

1555. Proposed by Mihdly Bencze, Brasov, Romania.
Given a, b, and ¢, k=12,...,n, all greater than 1, find all real solutions x of

n n
Y (x +a)1°g”c“ =Y (x +b)l°gbc".
k=1 k=1

1556. Proposed by Gregory Galperin and Hillel Gauchman, Eastern Illinois Univer-
sity, Charleston, Illinois.

Let ay, ..., a, be positive numbers with a,a, *-- a, = 1. Set x;, = (L}_,a;) — a, for
each i=1,..., n. Prove that

—

L=
—
+
=
A
[a—

.

We invite readers to submit problems believed to be new and appealing to students and teachers of
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie
should have an unexpected, succinct solution.

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a
separate sheet containing the solver’s name and full address.

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor, Department of
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail should also provide an
e-mail address.

315
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1557. Proposed by Peter Y. Woo, Biola University, La Mirada, California.

Let PQ be a diameter of a circle, with A and B two distinct points on the circle on
the same side of PQ. Let C be the intersection of the tangents to the circle at A and
B. Let the tangent to the circle at Q meet PA, PB, and PC at A, B, and C’,
respectively. Prove that C’ is the midpoint of A'B’.

1558. Proposed by Mansur Boase, student, St. Paul’s School, London, England.

Let the sequence (K,),.; be defined by K; =2, K, =8, and K,,, =3K,,; —
K, +5(—=1)". Prove that if K, is prime, then n must be a power of 3.

Quickies

Answers to the Quickies are on page 322.

Q883. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada.

Given n rays in R" forming a non-degenerate n-hedral angle with vertex O and a
point P in the interior of this angle, find points on the rays minimizing the volume of
the simplex formed by the points and O under the restriction that P is in the
hyperplane formed by the points.

(This generalizes Q847 from the April 1996 issue of this MAGAZINE.)

Q884. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, New York.

Find the number of ordered rooted trees with n edges that have exactly one node
with more than one child.

(A tree is rooted if each edge is directed away from a designated node or “root.”
The direction is considered to be from “parent” to “child.” It is ordered if the
children of each node form a sequence rather than a set.)

Solutions

An Integral Sum of Cube Roots October 1997

1529. Proposed by David C. Kay, University of North Carolina at Asheville, Asheville,
North Carolina.

For what positive numbers a is

?/2+\/a_ +3/2—\/Z

an integer?
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Solution by Dennis Reigle, Beth Stockslager, and Karen Blount, students, Shippens-
burg University, Shippensburg, Pennsylvania.

The expression is an integer for ¢ = 100,/27 and a = 5.

We prove a generalization of the stated problem. For fixed k >0 and a > 0, define

3 3 3 3
z=z(a) =Vk+Va +Vk—va =vVa +k —Va —k.
Observe that @ > 0 implies that z(a) > 0 and |Va +k|>|va —k|. Thus

(a) = 1 - 1 <0
6va (Va +k)”°  6va(Va —k)”’

for all >0, a+ k2. Since z(0) = 2% and z(a@) is continuous, it follows that the
3
integer values of z are precisely the integers in the interval (0,2\/75 ] To find the

value of a that produces the integer z, we solve for a in terms of z,

(2% +k)°(8k —z°)
a= :
27z°
For k =2, the only possibilities are z =1 when ¢ =5 and z =2 when a = 100/27.

Also solved by Fasakin Dlumuyiwa Adeyemi, Reza Akhlaghi, Anchorage Math Solutions Group, Michael
H. Andreoli, Angelo State Problem Group, Marcia Ascher, Herb Bailey, Matt Baker (graduate student),
Roy Barbara (Lebanon), Brian D. Beasley, Rebecca Berg, ]. C. Binz (Switzerland), Jean Bogaert
(Belgium), Stan Byrd, Maureen T. Carroll, Sabin Cautis (Canada), Robin Chapman (United Kingdom),
John Christopher, Charles K. Cook, Daniel J. Curtin, Ann Davis (student), Dan Davis, Thomas Dence,
Daniele Donini (Italy), Robert L. Doucette, Roger B. Eggleton, Milton P. Eisner, Russell Euler and Jawad
Sadek, Habibollah Y. Far, Tim Flood, Arthur H. Foss, Matt Foss, Lorraine L. Foster, Marty Getz and
Dixon Jones, John F. Goehl, Jr., Natalio H. Guersenzvaig ( Argentina), Bradley Gunsalus (student) and
Paul Deiermann, Lee O. Hagglund, D. Kipp Johnson, Geoffrey A. Kandall, Hans Kappus (Switzerland),
James Kiefer, Kee-Wai Lau (China), Norman F. Lindquist, Nick Lord (England), George B. Marketos,
Jack McCown, Edwin P. McCrary, Mark McKinzie, Ioana Mihaila, Can A. Minh (graduate student), Atar
Sen Mittal, Lucas Monzon, Alan Murra (student), William A. Newcomb, Stephen Noltie, Thomas |. Osler
and James Chappell (student), Yi-chuan Pan, P. J. Pedler (Australia), R. Glenn Powers, Neville Robbins,
Kenneth Rogers, Daniel M. Rosenblum, Shiva K. Saksena, Zeke Sarfa, Volkhard Schindler (Germany),
Harry Sedinger, Heinz-Jiirgen Seiffert (Germany), Michael Semenoff, Nicholas C. Singer, Jason Skinner,
W. R. Smythe, Anthony Sofo (Australia), Stephen Swiniarski, Richard L. Syverson, TAMUK Problem
Solvers, R. W. W. Taylor, R. S. Tiberio, University of Central Florida Problems Group, Jack V. Wales, Jr.,
Charles H. Webster, Western Maryland College Problems Group, Nathan Wetzel, Joseph Wiener, Michael
Woltermann, Kenneth L. Yocom, Monte J. Zerger, and the proposer. There were eleven incorrect solutions
and two incomplete solutions.

Tower of Bubbles October 1997

1530. Proposed by Allen J. Schwenk, Western Michigan University, Kalamazoo,
Michigan.
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A spherical bubble of radius 1 is surmounted by a smaller, hemispherical bubble,
which in turn is surmounted by a still smaller hemispherical bubble, and so forth, until
n chambers including the initial sphere are formed. What is the maximum height of
any bubble tower with n chambers?

1. Solution by Stephen Noltie, Ohio University, Lancaster, Ohio.

The maximum height of any bubble tower with n chambers is 1 + Vn.

We compute the maximum height assuming all bubbles, including the bottom one,
are hemispherical. We can then add 1 at the end to answer the original question.
More generally, let h(r,n) be the maximum height of a stack of n hemispherical
bubbles with bottom hemisphere of radius r. Clearly, h(r,n) =r-h(1, n) since r is
just a “scale factor.” We prove that h(1,n) =+vn by induction, beginning with the
obvious h(1,1) = 1. Now assume that h(1,n) = yn. Then the maximal height of a
tower with n + 1 chambers, whose second-from-bottom hemisphere has radius r, is

f(r)=V1=7r® +h(r,n) =V1—r® +r/n. Maximizing f(r) for 0 <r <1 yields a

maximum value of
f("/ %)=Vﬂ+l.

This completes the induction. Furthermore, we see that the radii of the bubbles
for the maximal tower of n bubbles are 1, /(n—1)/n, (n—2)/n,

V(n=3)/n,....y1/n.

I1. Solution by Nick Lord, Tonbridge School, Kent, England.
The height of a tower with hemispherical chambers of radii 1 > r; >ry > -+ >r, _;

is
h=l+\/l—1’12 +\/r12—r22 +--'+\/r3_2—r3_1 + 1,1

Now apply the Cauchy-Schwarz inequality to

n—1>"n-1

(1,1,...,1) and (\/l—rlz,\/rlz—rzz,..., Ty =i, ) in R”
to see that h < 1+ Vn with equality if and only if
\/1_7"12 =\/’”12_’"22 == ’”3—2_7%2—1 =Th-1>

which gives r,=+/(n—1i)/n forl<i<n—1.

III. Solution by Michael Vowe, Therwil, Switzerland.
Denote the radii by r;, =1,ry,75,..., r,. Then we obtain for the height of the
bubble tower with n chambers

h=r + \/rlz—rgz + e +\/r3_1 —rnz +7,.

Then by the concavity of the square root function (Jensen’s inequality),

2 _ 8 .2 2 2 24 .2
r{—trgtryg—ry+ o try  —r;+r
h3r1+n\/l N - nl vt o+ =14 Vn,

with equality if and only if

2 22 2o =
Ty =ty =Tty — 3= T

orry,=y(n—i+1)/n.
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Also solved by Herb Bailey, Matt Baker (graduate student), Roy Barbara (Lebanon), ]. C. Binz
(Switzerland), Jean Bogaert (Belgium), Gerald D. Brown, Sabin Cautis (Canada), Robin Chapman
(United Kingdom), Haiwen Chu (high school student), Dan Davis, Paul Deiermann, Daniele Donini
(Italy), Robert L. Doucette, John D. Eggers, Roger B. Eggleton, Russell Euler and Jawad Sadek, Tom
Gettys, Marty Getz and Dixon Jones, John F. Goehl, Jr., David C. Kay, James Kiefer, Emil F. Knapp,
Neela Lakshmanan, Kee-Wai Lau (China), Can A. Minh (graduate student), Thomas . Osler, Robert
Patenaude, P. J. Pedler (Australia), Gao Peng (graduate student), Volkhard Schindler (Germany),
Edward Schmeichel, Harry Sedinger, Chris Sliger and Gerald Thompson, W. R. Smythe, TAMUK Problem
Solvers, Andrew Wade (Canada), Jack V. Wales, Jr., Western Maryland College Problems Group, Yongzhi
Yang, and the proposer. There were twelve incorrect solutions and one incomplete solution. The main error
was to assume the radii form a geometric progression.

Distances Moved Under a Permutation October 1997

1531. Proposed by Claus Mazanti Sorensen, student, Aarhus University, Aarhus,
Denmark.

For which positive integers n does there exist a permutation o in the symmetric
group S, such that the map k= |o(k) — k|, k €{1,2,..., n}, is injective?

Solution by Gao Peng, physics graduate student, University of Oklahoma, Norman,
Oklahoma.

There exists such a permutation if and only if n is of the form 4m or 4m + 1 for
some integer m.

First observe that, for any permutation o,

kil lo(k) —k| kil (o(k) —k)=0(mod2).

Next observe that the required o must be a bijection between {1,2,...,n} and
{0,1,...,n — 1}). We then have
n n—1
n—1)n
Ylo(k)—k[= X k= L_2__)_
k=1 k=0
For n of the form 4m + 2 or 4m + 3, this sum is odd, so no such o exists.

For n =4m, define o by

4m+1—-k ifl<k<mor2m+1<k<3m-—-1,

4m —k ifm+1<k<2m-—1,
o(k)y={4m+2—-k if3m+1<k<4m,

1 if k=2m,

3m if k=3m.

For n =4m + 1, define o by

4m+2—-k ifl<k<mor2m+2<k<3m,

dm+1—-k ifm+1<k<2m,
o(k)=(4m+3—k if3m+2<k<d4m+1,

1 ifk=2m+1,

3m+1 if k=3m+ 1.

It is routine to verify that o€ S, and that k — o (k) — k| is injective in both cases. To
better see what is going on, we write o in cycle notation for n =12 and n = 13:
(1,12,2,11,3,10,4,8,5,7,6)9) and (1,13,2,12,3,11,4,9,5, 8, 6, 7)(10).
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Comment. D. J. Rogers and Robin Chapman, as well as Achilleas Sinefakopoulos,
note that the problem was proposed by M. J. Pelling as E3269 in the American
Mathematical Monthly, whose statement and solution appeared in the June-July 1988
and November 1989 issues, respectively.

Also solved by Roy Barbara (Lebanon), Jean Bogaert (Belgium), Robin Chapman (United Kingdom),

Daniele Donini (Italy), Roger B. Eggleton, Marty Getz and Dixon Jones, W. R. Smythe, University of
Central Florida Problems Group, Michael Woltermann, and the proposer.

Concurrency of an Altitude and Two Cevians October 1997
1532. Proposed by Herbert Giilicher, Westfilische Wilhelms—Universitit, Miinster,
Germany.

Let AABC, AACP and ABCQ be non—overlapping triangles in the plane with
£ CAP and £ CBQ right angles. Let M be the foot of the perpendicular from C to
AB. Prove that lines AQ, BP, and CM are concurrent if and only if £ BCQ = £ ACP.

The problem statement should have included the condition that neither £ ABC nor
£ BAC is a right angle.

I. Solution by Hans Kappus, Rodersdorf, Switzerland.

Orient AABC in the complex plane so that A=a, B=b, and C =ic with
a,b,c€Rand a <b. Let a:= £ ACP and B:= £ BCQ. Then

P=a+i(ic—a)tan a =a —ctan a —iatan a.
The line through B and P is given by the parametric equation
z=(1l=A)b+Ma—-ctana—iatan a), A€R.

Its point of intersection with the line CM, the imaginary axis, is found by setting
Re z =0 and turns out to be

iab tan «
2= .
1" ag—b—-ctana

Similarly, we see that AQ intersects CM at
_ iabtan B
2T Y "b—ctan B’
When neither £ ABC nor £ BAC is a right angle ab # 0. It now follows that z, =z,
if and only if tan o = tan B, or a = B.

I1. Solution by Achilleas Sinefakopoulos, student, University of Athens, Athens,
Greece.

Because neither 2 ABC nor £ BAC is a right angle, A does not lie on line BP and
B does not lie on line AQ. Furthermore the perpendiculars from A to BP and from
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B to AQ intersect the line CM, say at points R and S respectively. Then AACR and
APAB are similar, since 2 PBA = 2 ARC and £ ACR= /£ CAB + L CMA = / PAB.
Thus, AC /AP = CR/AB. The same reasoning yields BC /BQ = CS/AB.

Now notice that £ BCQ = £ ACP if and only if BC/BQ = AC /AP if and only if
R and S coincide. If R and S coincide, then AQ, BP, and CM meet at the
orthocenter of AABR. Conversely, if AQ, BP, and CM intersect at K, then K must
be the orthocenter of AABR. Hence AK is perpendicular to BR. But AK is also
perpendicular to BS. Accordingly, R and S must coincide.

Also solved by Reza Akhlaghi, Herb Bailey, Roy Barbara (Lebanon), Francisco Bellot Rosado (Spain),
J. C. Binz (Switzerland), Robert X. Brennan, Gerald D. Brown, Sabin Cautis (Canada), Robin Chapman
(United Kingdom), Miguel Amengual Covas (Spain), Daniele Donini (Italy), David Doster, Robert L.
Doucette, Ragnar Dybvik (Norway), Milton P. Eisner, Lorraine L. Foster, Marty Getz and Dixon Jones,
D. Kipp Johnson, James Kiefer, Neela Lakshmanan, Nick Lord (England), Robert Patenaude, Gao Peng
(graduate student), Volkhard Schindler (Germany), Harry Sedinger, Michael Vowe (Switzerland), Michael
Woltermann, Bilal Yurdakul (student, Turkey), and the proposer.

A Quadratic Recurrence Relation October 1997

1533. Proposed by Joaquin Gomez Rey, I. B. “Luis Buiiuel,” Alcorcon, Madrid,
Spain.

Solve the recurrence relation a,,, = Xj_ 0( )ak a,_; in terms of a,.

1. Solution by most solvers.
We show that a, =nlag*! by induction. The claim is clear for n =0, so assume
=klak™ for0<k <n. “Then

n

apy = 3 (Z)k!aé”(n—k)!ag'k“ = Z nlag*t® =(n+1)laj*2,
k=0

completing the proof.

I1. Solution by Western Maryland College Problems Group, Westminster, Maryland.
We define by = a,/k! and B(t) = T5_,bitk. After dividing the original recur-
rence by n!l, we see that the sequence (b,) satisfies

(ﬂ+l)b"+1 Zbk n—k*

This leads to the differential equation B'(¢) =[B(t)F, B(0) =a,. Its unique power
series solution is

B(t)_l—at Z éltk’

and the result follows.

Also solved by Ed Adams, Robert A. Agnew, Reza Akhlaghi, Anchorage Math Solutions Group, P. J.
Anderson (Canada), Michael H. Andreoli, Angelo State Problem Group, Marcia Ascher, Matt Baker
(graduate student), Roy Barbara (Lebanon), J. C. Binz (Switzerland), Jean Bogaert (Belgium), Paul
Bracken (Canada), Gerald D. Brown, Dale R. Buske, Stan Byrd, Sabin Cautis (Canada), Robin Chapman
(United Kingdom), John Christopher, Haiwen Chu (high school student), C. Coker, Charles K. Cook, Paul
Deiermann, Emeric Deutsch, Daniele Donini (Italy), Robert L. Doucette, Ragnar Dybvik (Norway), John
D. Eggers, Roger B. Eggleton, David Flannery (Ireland), Matt Foss, Lorraine L. Foster, Marty Getz and
Dixon Jones, Michael Golomb, Natalio H. Guersenzvaig ( Argentina), James C. Hickman, Danrun Huang,
Jeffrey J. Ibbotson, Hengli Jiao, D. Kipp Johnson, Hans Kappus (Switzerland), Parviz Khalili, James
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Kiefer, Tom Kilkelly, Emil Knapp and Alan Murra (student), Harris Kwong, Kee-Wai Lau (China), Carl
Libis, Norman F. Lindquist, Nick Lord (England), R. F. McCoart, Jr., Jack McCown, Mark McKinzie,
Janice A. Meegan, lIoana Mihaila, Lucas Monzon, Kandasamy Muthuvel, William A. Newcomb, Thomas J.
Osler, P. ]. Pedler (Australia), Gao Peng (graduate student), R. Glenn Powers, Robert L. Raymond,
Jorge Rodriguez, Kenneth Rogers, M. A. Roondog, Daniel M. Rosenblum, Zeke Sarfa, Edward Schme-
ichel, Volkhard Schindler (Germany), Randy K. Schwartz, R. P. Sealy (Canada), Heinz-Jiirgen Seiffert
(Germany), Alexander Shaumyan, Achilleas Sinefakopoulos (student, Greece), Nicholas C. Singer, W. R.
Smythe, Albert Stadler (Switzerland), David R. Stone, Richard L. Syverson, TAMUK Problem Solvers,
Gerald Thompson, R. S. Tiberio, William F. Trench, Trinity University Problem Solving Group, Michael
Vowe (Switzerland), Joseph Wiener, Michael Woltermann, Yongzhi Yang, Kenneth L. Yocom, Bilal
Yurdakul (student, Turkey), and the proposer. There was one incomplete solution.

Answers

Solutions to the Quickies on page 316.

A883. Choosing the origin to be at O, let v; denote the unique vectors from O along
the ith ray such that v, + --- +v, =P. If the chosen points are «x,v;, then the

i1

restriction implies that 1/x, + --- +1/x, = 1. The volume of the simplex is
xy o xdet(vy...v,) /nl
The arithmetic-geometric mean inequality implies the volume is minimized when
X =...=x
so that P is the centroid of the (n — 1)-simplex formed by the n chosen points.

A884 I. The number of ordered trees with k edges in which only the root of the
tree has more than one child is 257! — 1, the number of ordered partitions of k into
at least two parts. Then the required number is £7_,(2¥"! —1)=2" —n — 1.

I1. Provided by the Editors. Suppose this one special node has k children, 2 <k <n.
Then we must distribute the remaining n —k vertices among the ancestors of this
special node and the lines of descent of its k children. In other words, we must place

n —k balls in k + 1 boxes. There are (Z) ways to do this, so the number we seek is

n n _ " B
kgz(k)-z 1—n.

(The numbers 2" — 1 — n are sometimes called Eulerian numbers.)

Correction

1525, June 1998. Dennis P. Walsh was inadvertently omitted from the list of solvers.
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Kiefer, Tom Kilkelly, Emil Knapp and Alan Murra (student), Harris Kwong, Kee-Wai Lau (China), Carl
Libis, Norman F. Lindquist, Nick Lord (England), R. F. McCoart, Jr., Jack McCown, Mark McKinzie,
Janice A. Meegan, Ioana Mihaila, Lucas Monzon, Kandasamy Muthuvel, William A. Newcomb, Thomas ].
Osler, P. |. Pedler (Australia), Gao Peng (graduate student), R. Glenn Powers, Robert L. Raymond,
Jorge Rodriguez, Kenneth Rogers, M. A. Roondog, Daniel M. Rosenblum, Zeke Sarfa, Edward Schme-
ichel, Volkhard Schindler (Germany), Randy K. Schwartz, R. P. Sealy (Canada), Heinz-Jiirgen Seiffert
(Germany), Alexander Shaumyan, Achilleas Sinefakopoulos (student, Greece), Nicholas C. Singer, W. R.
Smythe, Albert Stadler (Switzerland), David R. Stone, Richard L. Syverson, TAMUK Problem Solvers,
Gerald Thompson, R. S. Tiberio, William F. Trench, Trinity University Problem Solving Group, Michael
Vowe (Switzerland), Joseph Wiener, Michael Woltermann, Yongzhi Yang, Kenneth L. Yocom, Bilal
Yurdakul (student, Turkey), and the proposer. There was one incomplete solution.

Answers

Solutions to the Quickies on page 316.

A883. Choosing the origin to be at O, let v; denote the unique vectors from O along
the ith ray such that v, + - +v, =P. If the chosen points are «x,v;, then the
restriction implies that 1/x, + -+ +1/x, = 1. The volume of the simplex is

x; - x,det(vy...v,)/nl
The arithmetic-geometric mean inequality implies the volume is minimized when
X, = ...=x,=n,
so that P is the centroid of the (n — 1)-simplex formed by the n chosen points.

A884 I. The number of ordered trees with k edges in which only the root of the
tree has more than one child is 2¢~! — 1, the number of ordered partitions of k into
at least two parts. Then the required number is X}_,(2¥"1 —1)=2" —n — 1.

I1. Provided by the Editors. Suppose this one special node has k children, 2 <k <n.
Then we must distribute the remaining n —k vertices among the ancestors of this
special node and the lines of descent of its k children. In other words, we must place

n —k balls in k + 1 boxes. There are (Z) ways to do this, so the number we seek is

n n _ - B
k§2(k)-2 1—n.

(The numbers 2" — 1 — n are sometimes called Eulerian numbers.)

Correction

1525, June 1998. Dennis P. Walsh was inadvertently omitted from the list of solvers.
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REVIEWS

PAUL J. CAMPBELL, editor
Beloit College

1997-98: Universitat Augsburg,
Germany

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for
this section to call attention to interesting mathematical exposition that occurs outside the
mainstream of mathematics literature. Readers are invited to suggest items for review to
the editors.

Singh, Simon (director). The Proof. Mathematics’ Holy Grail: Proving Fermat’s Last Theo-
rem. Film, color, 60 min., 1996; $19.95 from http://www.pbs.org/wgbh/shop/novavideo.
html . Transcript and teacher’s guide at http://www.pbs.org/wgbh/nova/proof .

This film conveys extremely well the tension, excitement, and emotional ups and downs
of the mathematical proof that was Andrew Wiles’s dream since age 10. Interviews with
colleagues at Princeton, Berkeley, and Cambridge are interspersed with interviews with
Wiles, including a teary-eyed scene where he notes that nothing that he will ever do again
will be so important. Are viewers sober or do they laugh at Barry Mazur’s remark, “You
may never have heard of elliptic curves but they’re extremely important”? Surely Shimura’s
observation “I found out that it was very difficult to make good mistakes” elicits smiles.
I wish the film identified the speakers at each appearance; and some computer graphics
and the lyrics “One way or another” appear too often. Viewers will enjoy the contrast
between Wiles’s messy and chaotic “public” desk at his office and the stern simplicity
of his attic home study, the latter reflecting his singular purpose working there on FLT.
Some mathematicians will cheer, and others deplore, his remark, “I never use a computer.”
(Thanks to Jirgen Ritter of Universitat Augsburg for loaning me his copy.)

Aronofsky, Darren, 7. Film, B&W, 1998. Distributed by Artisan Entertainment. A peep
into the pi perplex. New York Times (5 July 1998) Style Section, 3. Berardinelli, James.
Darren Aronofsky’s piece of the m, ReelViews (7 July 1998) (http://movie-reviews.
colossus.net/comment/070798.html). Holden, Stephen, “Pi”: Living life by the numbers
can give a guy a headache. New York Times (10 July 1998) E18 (http://www.nytimes.
com/library/film/071098pi-film-review.html). O’Sullivan, Michael, Darren Aronof-
sky: “Pi” in the Sky, Washington Post (26 July 1998) G1, http://www.washingtonpost.
com/wp-srv/Wplate/1998-07/26/070I-072698-1idx.html . Blatner, David, The Joy of Pi,
Walker & Co., 1997, $18. ISBN 0-802713327. Berggren, Lennart, Jonathan Borwein, and
Peter Borwein (eds), Pi: A Source Book, Springer-Verlag, 1997; 736 pp, $59.95. ISBN
0-387-949240.

Pi is having its fifteen minutes of fame. Now, coming to a theater near you: m, the movie!
New Yorkers have already seen the symbol 7 on sidewalks all over the city, done as a
promotion for this thriller movie made for under $100,000. A mathematician figures out
how to predict the stock market and is pursued by a brokerage house (who want to cash
in) and by a rabbi (who wants him to decode the secret name of God). The film won the
Directing Award at the Sundance Film Festival. The schedule of venues where the film will
play is at http://www.pithemovie.com/theat.html . (I haven’t seen the film.) Meanwhile,
you can be the first in your department to wear the new fragrance Pi, due out from Parfums
Givenchy this fall and billed as “a salute to the sex appeal of intelligence.”
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Hill, Theodore P., The first digit phenomenon, American Scientist 86 (4) (July-August
1998) 358-363. Browne, Malcolm W.; Following Benford’s law, or looking out for No. 1,
New York Times (4 August 1998) F4. Peterson, Ivars, First digits, http://www.maa.org/
mathland/mathtrek_6_29_98.html .

Benford’s “law” is that the leading digit of elements of many data sets is d with frequency
log,o(1+ 1/d) for d = 1,...,9. In particular, the frequency of a leading 1 is log; 2 ~ .3.
Despite the name, Benford’s law was known to Simon Newcomb in 1881, who observed
greater wear on pages of logarithm tables for smaller leading digits. Benford’s law, which
is scale-invariant, is named after an engineer at General Electric who verified it empirically
for many data sets. Nonconformance of data to Benford’s law has been used to detect fraud
in accounting and tax data, as well as errors in computer programs.

Browne, Malcolm W., Scruffy is badge of pride, but some physicists long for cool, New York
Times (21 July 1998), http://www.nytimes.com/library/national/science/072198sci-
essay.html .

Can you spot mathematicians, on the plane to a national convention or walking around
there, from how they dress? A letter by Jeremy Levy (University of Pittsburgh) in Physics
Today (July 1998) chides physicists for their shabby look and suggests a connection with
dropping enrollments in physics. He claims that physicists can’t educate a clothes-conscious
public about the importance and fascination of basic research without looking “cool.” Levy
also deplores a shortage at physics meetings of Internet facilities, laser pointers (I find it
distracting how they jiggle all over), computer projection displays, and other up-to-date
accoutrements: “We look and act like losers.” Of course, he’s talking just about physicists,
not mathematicians.

Kolata, Gina, A mystery unraveled, twice, New York Times (14 April 1998) F1, F8. Peter-
son, Ivars, Cracking a medieval code, http://www.maa.org/mathland/mathtrek_5_4_98.
html . Reeds, James A., Solved: The ciphers in Book III of Trithemius’s Steganograph-
ica (26 March 1998), http://www.research.att.com/ reeds/ , to appear in Cryptologia.
Ernst, Thomas, Schwarzweile Magie. Der Schliissel zum dritten Buch der Steganographia
des Trithemius, Daphnis 25 (1996) (1); also published as a book by Editions Rodopi, ISBN
9051839855.

Johannes Trithemius (1462-1516) was a German abbot who dabbled in what was in his
time considered an occult subject: cryptography. He was the author of the first several
books on the subject, which were devoted mainly to steganography (“hidden writing”),
the concealment of a secret message as a subsequence of letters in an innocent-appearing
cover letter. (Trithemius, however, talked in terms of incantations and invoking spirits,
and concealed his messages in long strings of demonic-sounding names—which led to the
Roman Catholic Church placing his books on its list of forbidden books.) His incomplete
third book, however, featured three-digit numbers (“astronomical data”) and he did not
publish a key to decrypting them. The possibility that the contents were just demonology
enhanced Trithemius’s reputation as a magician. In fact, however, James A. Reeds (AT&T
Labs) and Thomas Ernst (La Roche College, Pittsburgh) independently discovered that
the book features numerical substitution ciphers with multiple numerical equivalents for
each plaintext letter. The plaintext is disappointingly banal (no secrets of the universe).
In 1676, W.E. Heidel, a lawyer who worked for the Archbishop of Mainz, claimed to have
deciphered the book—but wrote about his discovery in his own cryptograms, which no one
could decipher. Ernst cracked Heidel’s cipher too: Heidel was indeed the first to decrypt
the book. (Moral: If you make a discovery that is potentially interesting to the public,
don’t encrypt your paper about it, and be sure that your organization distributes a press
release.)



NEWS AND LETTERS

Letters to the Editor

Dear Editor:

In the charming article “Functions with compact preimages of compact sets”
in the December 1997 issue of Mathematics Magazine, two topology students and
their instructor discuss functions from the real line into itself with the property that
the preimage of every compact set is compact. They show that such a “preimage-
compact” function need not be continuous, but its set of discontinuities must be a
closed, nowhere dense set, and they give some examples to show that this disconti-
nuity set can be rather large.

A slight adaptation of the authors’ introductory example shows that every closed,
nowhere dense set F' is the set of discontinuities of some preimage-compact function.
Indeed, define a function f via f(z) =z if z € F and f(z) = z + dist(z, F)~! when
z ¢ F. Evidently f is continuous on the complement of F' and unbounded in a
neighborhood of every point of F'. Hence F' is the set of discontinuities of f. Since
F is closed, the restriction of f to F' is preimage-compact. On the other hand, if
z ¢ F, then f(z) blows up when z approaches either F' or infinity, and consequently
the restriction of f to the complement of F' is also preimage-compact.

Incidentally, a real-valued function that is both continuous and preimage-compact
is a special case of what is called a “proper mapping” in the terminology popularized
by Bourbaki’s General Topology.

Harold Boas
Texas A&M University
College Station, Texas 77843-3368

Dear Editor:

The article “Trisection of angles, classical curves, and functional equations,” in
the June 1998 issue of Mathematics Magazine, contains a historical error on page
186: The first full paragraph states that Dinostratus lived before Hippias. He lived
after Hippias. The facts are: Hippias invented the trisectrix in order to trisect any
angle, probably by about 430 BC. Dinostratus some 80 years later realized that the
same curve could be used to square the circle, and hence renamed it the quadratrix
(cf. Boyer, A History of Mathematics, 1968, page 106).

Ernest Fandreyer

Fitchburg State College
Fitchburg, MA 01420-1930
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Carl B. Allendoerfer Awards — 1998

The Carl B. Allendoerfer Awards, established in 1976, are made to authors of
expository articles published in Mathematics Magazine. Carl B. Allendoerfer, a
distinguished mathematician at the University of Washington, served as President
of the Mathematical Association of America, 1959-60. This year’s award was pre-
sented at the July 1998 Mathfest, in Toronto. The citations follow.

Dan Kalman, Robert Mena, and Shahriar Shahriari, “Variations on an
Irrational Theme—Geometry, Dynamics, Algebra,” Mathematics Maga-
zine 70 (April 1997). To quote the authors of the paper, “If someone mentions
irrational numbers, what do you think of?” Kalman, Mena, and Shahriari begin
with the early history of irrational numbers—the Pythagoreans’ discomfort with
incommensurable line segments—but quickly turn to what is interesting and novel.
A geometric argument for incommensurability based on infinite descent is used to
motivate the use of matrix algebra to show the irrationality of the square root of two
in dynamical terms. The use of dynamical systems enables the authors to present
elegant proofs of some well-known results about the monic polynomials with in-
teger coefficients (for example, the real roots are either integral or irrational) and
to generalize these results to monic polynomials over an integral domain. It’s all
interesting, novel, beautifully written, and a pleasure to read.

Biographical Notes Dan Kalman has been a member of the mathematics faculty
at American University, Washington, DC, since 1993. Before that he worked for
eight years in the aerospace industry, and taught at the University of Wisconsin,
Green Bay. During the 1996-97 academic year, he served as an Associate Executive
Director of the Mathematical Association of America. Kalman has a B.S. from
Harvey Mudd College and a Ph.D. from the University of Wisconsin, Madison.

Kalman was recognized by the MAA with a Pélya Award in 1994 and a Trevor
Evans Award in 1997. He has been a frequent contributor to all of the MAA jour-
nals and is an Associate Editor for Mathematics Magazine. His book, Elementary
Mathematical Models, has been published in the MAA’s Classroom Resources se-
ries. One of his mathematical interests is automatic differentiation, the subject of
an invited address he presented at the January 1997 joint mathematics meetings in
San Diego.

Robert Mena has been at Long Beach State since 1988, after 15 years at the
University of Wyoming. His favorite courses include combinatorics, number theory,
statistics, and history of mathematics.

Shahriar Shahriari has been teaching mathematics at Pomona College since 1989.
He received a B.A. (with high honors) from Oberlin College in 1977, and a Ph.D.
from the University of Wisconsin-Madison in 1986. His thesis advisor was I. Martin
Isaacs, and his area of research was representation theory of finite groups. Shahri-
ari’s current research interest is in the combinatorics of finite sets.

Among the course Shahriari teaches at Pomona is an alternative to second semester
Calculus in which calculus topics are taught in the context of number theory, and
the students develop all the material through solving problems. He also teaches a
combinatorics class, which is “writing intensive.” In addition to the usual homework
assignments, the students work on “labs” in a collaborative learning environment
and write two expository papers.



A Web-Searchable Database for Mathematics Magazine

We are happy to inform readers of the Magazine’s useful new Web-searchable
database of Articles, Notes, Proofs Without Words, and more. The database can
be found through MAA Online, at

http://wuw.maa.org

(click on Journals and then on Mathematics Magazine), or directly from its “home”
at Harvey Mudd College, at

http://www.math.hmc.edu/MathMag/

The database currently contains information going back to 1974. We plan in the
near future to extend the database back to the Magazine’s inception, in 1927. The
database contains the title, author, and first paragraph (and, in many cases, author’s
summary) of almost every Article, Note, and Proof Without Words published in
the Magazine since 1974. An easy-to-use search engine allows users to search for
specific lists of records, or to browse the full contents of any single issue.

The database and the search page were created by Harvey Mudd College math-
ematics students as part of Harvey Mudd’s Undergraduate Math Forum, run by
Professor Arthur Benjamin in the 1997-1998 academic year. (Arthur Benjamin is
also an Associate Editor of the Magazine.)

The participating students are: Aaron Archer, Drew Bernat, Neil Burrell, Carrie
Crum, Celeste Elton, Patri Forwalter-Friedman, Matthew Fluet, Ryan Gatti, Rif
Hutchings, Jennifer Jack, Nathan Jakubiak, Brian Johnson, Christian Jones, Bill
Kalahurka, John Larkin, Jeff Liebert, Naveen Mathew, Dominic Mazzoni, Andy
Olson, Scott Robertson, David Rudel, Thara Salamone, Stacy Sanders, Itai Seggev,
Marie Snipes, Jascha Swisher, Jennifer Weber, Bill Williams, and Andromeda, Yel-
ton.

Each student was assigned a volume of Mathematics Magazine, and gave two pre-
sentations based on his or her reading. Each student also entered the first paragraph
of each note and article on a web page designed by Christian Jones. Dominic Maz-
zoni designed the search engine, and Matthew Fluet has helped extend and upgrade
the database.

We thank all of these students for their useful efforts, and we hope that readers,
prospective authors, and researchers will all find the database useful and inviting.
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