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ARTICLES 

Geometry, Voting, and Paradoxes 
DONALD G. SAARI 
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CREME, Universit6 de Caen 

Caen 
France 

1. Problems 

What could be easier than "voting?" After all, to vote we just count how many people 
favor each candidate. Wh-at can go wrong with something so elementary as this? 

Actually, a lot. As mathematicians and others have shown over the last two 
centuries, once there are at least three candidates-not an atypical situation-the 
winner need not be whom the voters really want. Such bad outcomes may occur not 
only because some voters continue to vote long after death; bad outcomes can also be 
caused by hidden mathematical peculiarities. 

We illustrate with an example from [6], where fifteen people select a common 
beverage from among M (Milk), B (Beer), and W (Wine). If" >-" means "is preferred 
to" and if the voters' preferences are as follows: 

Number Preference 
6 M > W> B 
5 B -W M(1) 
4 W-B>M 

then the plurality outcome (where each person votes for his or her favorite beverage) 
is M >- B >- W with the 6:5:4 tally. Apparently, Milk is the beverage of choice. 

Before ordering a keg of Milk, let's pause. Is Milk truly the voters' beverage of 
choice? If so, we would expect voters to prefer Milk to Beer. But as the next table 
shows, these voters actually prefer Beer to Milk: 

Number Preferences Milk Beer 
6 M > W > B 6 0 

5 B >- W >- M 0 5 
4 W >- B >- M 0 4 

Total 6 9 

Similarly, 9 voters prefer Wine to Milk and 10 prefer Wine to Beer. This creates a 
contradiction and potential controversy among the party goers, because these pairwise 
comparisons suggest that the voters really prefer W >- B >- M, the ranking opposite to 
the plurality outcome. What went wrong? 

24A3 
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Mathematicians This type of problem, coupled with the obvious importance of 
elections, motivated several eighteenth century mathematicians to investigate the 
mathematical peculiarities of elections. The mathematician J. C. de Borda was 
probably the first to consider these issues from an academic perspective when, in 
1770, he questioned whether the French Academy of Science was electing to 
membership whom they really wanted. His concern, as illustrated by the beverage 
example, is that the "winner" of the widely used plurality vote can be the candidate 
the voters view as "inferor. 

Borda [1] devised an alternative procedure, now called the Borda Count, which 
assigns 2, 1, and 0 points, respectively, to a voter's top, middle, and bottom-ranked 
candidate; candidates are then ranked according to the sum of assigned points. To see 
that this method can change the outcome, consider the Borda Count tally for the 
beverage example: 

Number Preferences Milk Beer Wine 
6 M >WV >B 6 X 2 0 6 X 1 
5 B >W >M 0 5 x 2 5 x 1 (2) 
4 W-B -M 0 4x 1 4X2 

Total 12 14 19 

This produces the W >- B >- M outcome, which agrees with the pairwise election 
rankings. 

The Borda Count appears to be the "correct" voting procedure-at least for this 
example. But what happens in general? Are there examples of sets of voters' 
preferences, called profiles, for which the Borda Count does poorly? Whly not use 
other weights, such as (6,5,0) or (4, 1,0), instead of Borda's choice of (2, 1,0)? 
Tallying methods that assign a specified number of points to a voter's first, second, 
and third ranked candidate are called positional voting methods. When normalized to 
assign a single point to a voter's top-ranked candidate, the point assignment defines a 
voting vector WA = (1, A, 0), 0 < A < 1. For instance, the normalized forms of (6, 5, 0) 
and the Borda Count are, respectively, w = (0, 5,0) and w = (1, ,0). Because 
WI = (1, 1,0) effectively requires a voter to vote against his or her bottom-ranked 
candidate, it is called the antiplurality nethod. 

The WA normalization makes it clear that there is a continuum of tallying methods 
where each is characterized by the weight (the A-value) placed on a voter's second- 
ranked candidate. Faced with all these possibilities, it was only natural for Borda's 
mathematical colleagues, such as Laplace, Condorcet, and others, to question which 
WA method is optimal in the sense that its outcomes best reflect the views of the 
voters. The debate they started continues today. 

Condorcet Marie-Jean-Antoine-Nicolas de Caritat Condorcet, the French mathe- 
matician, philosopher, and politician, added to the controversy in the 1780's by 
arguing that, instead of using a WA method, the outcomes should be decided strictly in 
terms of the pairwise vote. The Condorcet winner is the candidate who beats all other 
candidates in pairwise elections. With the preferences of table (1), Wine, which wins a 
majority vote over each of the other beverages, is the Condorcet winner. Milk is the 
Condorcet loser. 

This content downloaded from 128.235.251.160 on Tue, 20 Jan 2015 08:20:22 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 71, NO. 4, OCTOBER 1998 245 

Until recently the Condorcet winner was almost universally accepted as the ultimate 
choice. (See [6, 7, 8] for arguments questioning this concept.) But, it has problems. To 
illustrate just one difficulty, suppose a mathematics department uses pairwise voting to 
choose a calculus book from among the choices { A, B, Cl. A natural way to select the 
book is by elimination, where after comparing two choices, say {A, B}, the winner is 
compared with the remaining choice, C. Suppose the views of the department 
members are 

Number Preferences 

5A >B >- C (3) 

5 B> C >-A 

5 C> A >- B 

As the following table shows, A wins the initial {A, B} comparison only to be 
beaten by C. In both elections the winner wins with a landslide two-thirds of the vote, 
so it seems safe to declare that the departmental ranking is the decisive C >- A >- B. 

Number Preference A B A C 

5 A> B >- C 5 0 5 0 

5 B> C >-A 0 5 5 0 

5 C >-A >- B 5 0 0 5 

Totals 10 5 5 10 

Although the outcome appears to be unquestionable, let's question it. We already 
know that C beats A and A beats B, so it remains to determine whether "top-ranked" 
C beats "bottom-ranked" B. We might expect no surprises, but there is one: B beats 
C by the same two-thirds landslide vote. In other words, this profile defines the cyclic 
election outcomes 

A>-B, B>-C, C>-A, 

whereby whichever candidate is voted upon last, wins-decisively. In particular, there 
is no Condorcet winner or loser. 

Condorcet understood that cycles could arise from pairwise voting; he demon- 
strated this behavior by introducing the example of table (3). Such an example is now 
known as a Condorcet profile. 

Cycles, then, make it impossible to select an "optimal" candidate. (For a compan- 
ion discussion of the problems of cycles, see [9].) But elections are intended to decide, 
so competing approaches have been devised to avoid stalemates. For instance, A. 
Copeland, a mathematician from the University of Michigan, developed a method 
which is similar to how hockey teams are ranked. A competing procedure, which 
involves counting the number of transpositions needed to convert one ranking into 
another, was devised by the mathematician J. Kemeny, from Dartmouth. (For a 
geometric analysis of both approaches, see [10, 11].) 

Complexity and geometry Which method is best? Although this issue appears 
straightforward, progress has been seriously hindered by the complexity of the 
combinatorics. A traditional way to compare procedures is to construct profiles that 
show how one method has a failing not suffered by another. But to construct 
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examples, we need to determine how many voters must be of each type so that the 
resulting election outcomes capture the desired phenomenon. 

To illustrate the complexity of the combinatorics, we offer some challenges. For 
instance, can the Condorcet and Borda winners differ? If so, find an illustrating 
profile. The beverage example proves that different positional methods create differ- 
ent election outcomes. Is there a general description explaining how election results 
change with changes in the WA methods? When using different WA voting vectors to 
tally ballots in the profile of table (1), either Wine, Milk, or both always emerges as 
the top choice (see [6]). Are there voters' profiles where each candidate is the 
"winner" for an appropriate WA? Are the supporting examples isolated or robust? Can 
we characterize all possible examples? What is the minimum number of voters 
needed to create each election oddity? 

In recent years, progress has been made on these concerns by replacing the 
traditional combinatoric method with a geometric perspective. A summary of this 
"geometry of voting" approach for three candidates is in the textbook [6], while 
progress for any number of candidates (obtained by use of symmetry groups, etc.) is 
reported in [7, 8]. In this essay we demonstrate how geometry dramatically reduces 
these previously complicated issues into forms simple enough to be presented to 
students who can graph elementary algebraic equations. 

2. Voter Types 

A voter's "type" is defined by how the voter strictly ranks the candidates { A, B, Cl. 
For convenience, denote these types by the following numbers: 

Type Preference Type Preference 
1 A >B 4 4 C> B >-A (4) 
2 A> C >B 5 B> C >-A 

3 C -A -B 6 B >-A >- C 

These types are reflected in the geometry of the equilateral triangle of FIGURE 1, 
where each candidate is identified with a vertex. Each poinit in the triangle is assigned 
an ordinal ranking of the candidates according to how close the point is to each vertex 

c 

3 4 

2 ~~~~5 

1 6 

A B 
FIGURE 1 

The representation triangle and ranking regions. 
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where, as in love, "closer is better." Points on the vertical line, for instance, are 
equidistant from A and B, so all of them are indi4ferent between these options; this 
is denoted by A B. Similarly, all points in the triangular sector "1" are closest to A, 
next closest to B, and farthest from C, and so define the A >- B >- C ranking. 

Considerable insight and unexpected conclusions already arise when the voters' 
beliefs are restricted to only three specified preference types. This is what we discuss 

here. But selecting three of six voter types creates (6) = 20 situations to examine. 
Fortunately, as shown in Section 5, symmetry arguments reduce the number to three. 

3. Condorcet Examples 

The mystery of the pairwise voting cycles justifies starting with the setting where 
voters' preferences come from the three types involved in the Condorcet profile of 
table (3). This setting is captured in FIGURE 2a, where the three preference types 
define a symmetric "pinwheel" configuration. (This "Z3 orbit" symmetry causes the 
cycles.) 

c 
C~~~~~~~ 

B>-C ~ ~ ~ A- 

\ 5 

A>- B > _ < &Cyclic 
ranklngs 

3 \ 
A B I \\ 

a. Admitted types b. Triangle T1 ' 

FIGURE 2 
Condorcet example setting. 

If ni is the number of voters of type j, then the total number of voters is 
n1 + n3 + n5 = n. Instead of dealing with integers, we divide by n, so that x = nl/n, 
y = n5/n, and z = n3/n represent the fractions of all voters that are of each type. In 

5 the textbook example, for instance, x = y = z = B 
The constraint x + y + z = 1, or z = 1-(x + y), allows us to represent all possible 

profiles as the (rational) points of the triangle 

T, = { ( x, y) I x, y ? 0, x + y < i} 

of FIGURE 2b. (The origin is at the lower left corner.) For a point (x, y) E T1, the 
fraction of all voters with type 1 and 5 preferences are given, respectively, by the x 
and y values; the fraction of all voters with a type 3 preference is 1 - x - y. 

Pairwise outcomes One hindrance to our understanding of election behavior is the 
difficulty of associating profiles with their election outcomes. With geometry, how- 
ever, this reduces to graphing elementary algebraic equations. In an { A, B} election, 
for instance, it follows from FIGURE 2a that only a type 5 voter votes for B; all other 
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voters are on the A side of the A B line, so they vote for A. Therefore, B beats A 
if and only if y > x + z = x + (1- x - y), or if y > 2. The T1 boundary for this region 
is the horizontal dashed line of FIGURE 2b. 

The analysis for the remaining two pairs is similar. For an { A, C} election, it follows 
from FIGURE 2a that only type 1 voters prefer A >- C, so A beats C if and only if 
X> 2; the boundary is the vertical dashed line of FIGURE 2b. Likewise with {B, C}: 
candidate C wins if and only if z = l-(x + y) > 1, or if (x + y) <; the T1 
boundary is the slanted dashed line in FIGURE 2b. 

As it is easy to determine which pairwise outcomes occur on each side of each 
dashed T1 boundary line, we know which election rankings are associated with each of 
the four resulting regions of profiles. For instance, the region to the extreme right, 
with T1 vertex (1, 0), is on the A >- B, A >- C, B >- C sides of the boundary lines, so all 
of these profiles define the type 1 ranking A >- B >- C. Similarly, two of the other 
regions identify all profiles resulting in type 3 or type 5 pairwise outcomes. Our real 
interest is in the remaining small triangle in the center, which identifies all profiles 
that cause cyclic pairwise outcomes. 

To illustrate how to use this geometry, suppose we want to determine the minimum 
number of voters required to construct examples for any of the admitted outcomes. 
To do so, notice that n, the total number of voters, is a common denominator for x 
and y. The answer, then, just involves finding in each region the points (x, y) with 
the smallest common denominator. 

As all points (x, y) with common denominator 2 are either vertices of T1 or vertices 
of the small triangle that causes cyclic outcomes, all two-voter examples have either 
unanimity outcomes, or non-transitive rankings involving tie votes. To illustrate, point 
(2, 0) defines the rankings A C, C B, even though A >- B. (So, peculiar election 
outcomes already arise with only two voters.) With three voters, (3, 3) is in the center 
of the cyclic region. (Point (3, 3) corresponds to modifying table (3) to have only one 
voter of each type.) Similar arguments show that points on the boundary lines require 
four voters. Therefore, with no more than four voters, we can create examples of all 
admitted pairwise rankings. 

One of the many oddities of voting theory is how conclusions can depend upon 
whether the number of voters is odd or even. The geometry shows that this peculiarity 
is caused by how rational points are distributed within a region, depending on the 
parity of the smallest common denominator. We illustrate by raising another question: 
Can cycles occur if only one voter in a large population has type 3 preferences? With 
n voters, this condition requires z = 1/n, so a required (x, y) point must satisfy 
x + y = 1-1/n and be in the cyclic region near (2, 2 ) If n is even, the only choices 
of (n2, 2) or (2- 12 2) are not admissible because they are boundary points. Thus, 
this particular behavior occurs if and only if n is odd and x = y = 1 

Probabilities There is a large literature in which complicated techniques are used 
to compute the probabilities of various election outcomes. (See, for instance, the 
excellent bibliography [4].) With geometry, however, it is easy to compute the 
likelihood of each outcome. For instance, if each point (i.e., each profile) in T1 is 
equally likely, then the common areas of the four regions prove that each outcome 
occurs with probability -. Similarly, say that a profile probability is centrally dis- 
tributed if the likelihood of profile (Pl, P2, p3) iS the same as (P2, P1, p), or of any 
of the four other ways these pj values can be permuted. An example is the 
multinomial distribution. This symmetry over voter types means that with a centrally 
distributed profile probability, all three transitive outcomes are equally likely. By 
appealing to the central limit theorem, we identify a wide class of settings where the 
likelihood of cyclic rankings dominates. 
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These 4 probability values represent limits as the number of voters becomes very 
large. To explain with n voters, notice that the number of fractions x and y with 
common denominator n that satisfy x + y = 0 (so z = 1) is the number of admissible 
numerators for x; it is 1. Similarly, if n -j of the n voters have type 3 beliefs (so 
z = 1 -j/n), the number of points (x, y) satisfying x + y =j/n is j + 1. The 
standard identity 

E ( k 2 1= k(2k + 1)(5) 

ensures that there are n 2) rational points in T1 with common denominator n. 

Therefore, n voters create ( + 2) different profiles among these three beliefs. 

An important observation (illustrated with n = 2,3) is that these (n 2) points need 
not be equally distributed among the four regions. So, to compute the number of 
points (or profiles) in each region, notice that the points in the small triangle defining 
cyclic outcomes are those (x, y) with x < 1/2, y < 1/2, and x + y > 2 For odd 
values of n, j different (x, y) points in the cyclic region satisfy x + y =1- 1-Z, 

j = 2,. . ., (n-1)/2. Using equation (5), this total of (n 8 points means that 
the fraction of the T1 points in the cyclic region is 

(n-1)(n+ 1) _ 1 3_ _ 

4(n+1)(n+2) 4 n+2J 

this tends to 4 as n -o 00. Similarly, for even values of n we have the smaller 

1 { 9n -6 1 
4t (n+1)(n+ 2) 4 

The following theorem results from similarly easy computations. 

THEOREM 1. When voters are restricted to types 1, 3, and 5, the four possible 
strict pairwise outcomes include these three types and the cyclic rankings 
A >- B >- C >- A. If profile points in T1 are assumed to be centrally distributed, then 
the three transitive rankings are equally likely. In the case of n voters, and we assume 
that all points in T1 are equally likely, the probability of strict rankings with cyclic 
outcomes is 1- 32) if n is odd and 4(1 (n+-)( +2))if n is even. The 

likelihood of a strict transitive ranking is 41 + 2) if n is odd and 1- n') if n 
is even. 

While the 4 probabilities are rapidly approached as the number of voters increases, 
notice the strikingly different values that occur for small n-values. For instance, with 
n = 3, instead of approximately 4 of the points in the cyclic region, there are only yO 
of them. For n = 4, this probability drops to zero, then rebounds to 7 for n = 5 only 
to drop to 1 for n = 6. Again, this oddity involving the parity of n reflects the 
distribution of rational points in T1. 

Positional outcomes The geometry also identifies all possible conflicts between the 
pairwise and the WA outcomes. Using FIGURE 1 to compute candidate B's WA = (1, A, 0) 
tally of an election, notice that she receives one point from each voter who has her 
top-ranked; these voters are of types 5 and 6, where B is a vertex of the ranking 
regions. With our FIGURE 2a restriction, B receives y x 1 points. Thle second place 
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votes of A points per voter come from the adjacent 1 and 4 regions of FIGURE 1. With 
FIGURE 2a, this adds Ax points for B. As the remaining two regions (2 and 3) represent 
where B is bottom-ranked, they contribute no points, so the total tally is y + Ax. The 
WA tallies for all candidates are as follows: 

Candidate Tally 

A (-A)x-Ay + A (6) 

B y + Ax 

C 1-x + (A-l)y 

The rest of the analysis mimics what we did with the pairwise vote. Namely, to 
determine which profiles define the relative A >- B or B >- A rankings, plot the A B 
boundary line defined by equating the A and B tallies. This defines the parametrized 
family of equations (1 - 2A)x - (1 + A)y + A = 0. Because x = 3, Y = 3 satisfies this 
equation for all A-values, all of these lines pass through (3, 3), which we call the 
rotation point. The line defined by A is determined by the rotation point and 

(1 2 A, O), its x-intercept. The results for all candidate pairs follow: 

Pair Equation Rotation Pt x-axis Pt 

A-B (1-2A)x-(l+A)y= -A (1 1) (-A 2A 0 

A-C (2-Ax+(1-2A)y= 1-A (1 1) 
I - 

A,O) (7) 

B -BC (I (+. A)x +(2 -A)y = I (3,3) 
I (]+ 0 

The effects of these lines are depicted in FIGURE 3 for three special cases: the 
plurality vote (A = 0); the Borda Count (A = 2); and the antiplurality method (A = 1). 
This figure identifies interesting behavior because it displays how election outcomes 
change with the procedure. To explain, notice that although the three boundary lines 
for the A = 0 and A = 1 triangles agree, each line is identified with a different pair of 
candidates. Connecting them is a fascinating rotation where, as the value of A 
increases, each boundary line rotates in a clockwise direction from its A = 0 setting to 
reach the adjacent boundary line position when A= 1. For instance, the A C 

\A >-C A >-B, A >-C A A C, 

A B>-BC B > \ B C A>-C 

\ I '. 

3- 2= 3= 

A ': A\ AAB 

FIGURE 3 
Computing wA outcomes. 
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boundary line passes through the (0, 1) vertex of T1 when A = 0 (the plurality vote), 
becomes vertical when A= 2 (the Borda Count), and stops at what had been the 
A B original position when A = 1. 

An immediate consequence of this rotation is that, with the exception of the ( 3 3 

point (the Condorcet profile where all WA methods have a completely tied outcome), 
each profile experiences three different WA election rankings as A varies through its 
admissible values. If a point is on a boundary line when A = 0, then two of the 
rankings have ties and one is strict. Otherwise, two of the rankings are strict and one 
involves a pairwise tie. The geometry shows that, rather than being an isolated 
phenomenon, conflict is unavoidable. 

As a second consequence, consider a region with transitive pairwise votes; say, the 
region labeled "1" in FIGURE 2b. (In FIGURE 3, this set of profiles is the region to the 
right of the vertical dotted line.) By examining this region in the A = 0 and A = 1 
triangles, we see that these profiles allow two different strict plurality and antiplurality 
election outcomes. For instance, the pairwise A >- B >- C outcome is accompanied by 
a plurality ranking of either A >- B >- C (type 1) or the conflicting A >- C >- B (type 2). 
While the difference in outcomes creates a conflict, at least the plurality and pairwise 
procedures agree on which candidate is top-ranked. A similar analysis holds for the 
antiplurality A = 1 where the conflicting ranking is B >- A >- C (type 6). Here, 
however, the pairwise and antiplurality methods agree only on who should be 
bottom-ranked; they can disagree on the rest of the ranking and who should win. 

The Borda Count allows not only two but three strict rankings for profiles from 
each of the three strict pairwise ranking regions. In fact, the rotation of the 
indifference lines and the monotonicity of the x coordinate (of the "x-axis point" in 
table (7) proves that for each A E (0, 1), WA admits three different strict election 
rankings for each of the three sets of profiles. This, of course, provides plenty of robust 
examples of conflict between the pairwise and WA rankings. 

The triangle defining cyclic pairwise outcomes admits even more conflict: here, 
anything can happen with any WA method. Namely, accompanying a pairwise cycle, we 
can have any strict WA ranking, any WA ranking with one pair tied, or a completely tied 
outcome. 

Because (from elementary trigonometry) all ranking regions of the A = 0 and A = 1 
triangles have the same area, each has the (limiting) probability of 6 This is also true 
for the smaller triangle with cyclic pairwise voting. Consequently in either 
case-whether we consider all profiles in T1 or restrict attention to profiles causing 
pairwise cycles-the limiting probability for any strict ranking for the A = 0, 1 
procedures is 6 The Borda Count (A= 2) favors the three outcomes of types 1, 3, 
and 5 (the types from the profile) with limiting probability of 2; the remaining three 
types have limiting probabilities of 9. What connects these different values is that 
(from the x-axis values of table (7)) the areas of some regions monotonically decrease, 
while others increase, as A ' 2 Then they change to monotonically approach the 
common value 6 as A -> 1. These statements, and others are equally easy to verify, are 
collected in the following theorem: 

THEOREM 2. If the three voter types 1, 3, and 5 are allowed, then each profile that 
is not a Condorcet profile admits three different WA election outcomnes as A varies. 

The set of profiles with pairtvise votes that define a particular strict transitive 
outcome allows only two strict election rankings with the plu,rality and with the 
antiplurality vote. In each case, one of these outtcomnes agrees with the pairwise 
rankings. All other WA outcomnes admnit three different strict rankings, one of which 
agrees with the pairwise ranking. The profile set causing cyclic pairwise outcomes 
admnits all possible WA rankings. 
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If all T1 points are equally likely, then the limiting probability of any strict election 
ranking (in either the set of all profiles or the cyclic region) is 6 for A = 0, 1. For the 
Borda Count the limxiting probability for either setting is j for outcomes of types 1, 3, 
and 5, and 9 for the remaining three types. 

The likelihood of an election outcomne being of a particular type either strictly 
increases or strictly decreases as A 2 

These results show that even with only three types of voter preferences, conflict can 
arise among the pairwise and positional election outcomes. So, which procedure is 
"best?" Frankly, the answer is not clear from this information. For instance, the fact 
that the plurality and pailwise outcomes identify the same candidate as being 
top-ranked can be fashioned into a strong argument in favor of the plurality vote-at 
least for this setting. On the other hand, the ranking of a unanimity profile should be 
its election ranking, so we should expect election outcomes to favor the three 
particular types represented in the profile. This is true for the Borda Count, but only 
to a lesser degree for the other WA methods. This observation can be developed into 
an argument supporting the Borda Count. With a little imagination, an argument can 
probably be fashioned to support any other procedure. So which procedure should we 
use? 

4. The Beverage Example Revisited 

While the Condorcet setting allows profiles to have different WA outcomes, the conflict 
is niowhere near as spectacular as that displayed in the beverage example, where 
completely reversed WA election rankings occur for different A values. This example, 
wllere two of the preferences share an edge of the FIGURE 1 triangle and the third 
ranking is from a ranking region with the remaining vertex, captures a familiar election 
setting wllere one candidate, A, is favored (top-ranked) by a portion of the voters, but 
strongly opposed (bottom-ranked) by the rest of them. The voters who dislike A, 
however, split in their opinions about the other two candidates. (This may have been 
the situation created by the candidacy of P. Buchanan during the 1996 Republican 
Presidential primaries.) As in FIGURE 4a, define x = n2/n, y = n5/n, and z = n4/n. 
To connect the beverage example with FIGURE 4a, identify M, B, W respectively with 
A, B, C so that beverage profile of equation (1) becomes x = S, Y = 4, and z = 

-5 

1 
15' 

C 

A>-B 
A >C 

B >C 5 

A B 

a. Adimiitted types b. Triangle T, 
FIGURE 4 

The beverage example setting. 
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Again, the z = 1 - (x + y) restriction allows all possible profiles to be represented 
as (rational) points in the FIGURE 4b triangle T2 = { (x, y) I x, y ? 0, x + y < 11. 

Pairwise outcomes Just as in Section 3, identifying profiles with their accompany- 
ing pairwise outcomes involves only elementary algebra. As FIGURE 4a shows, in an 
{A, B} election only type 2 voters vote for A, so A beats B if and only if x > 2 

Similarly, in an { A, C} election, A beats C if and only if x > 2. The common T2 
boundary for these conditions is the vertical dashed line of FIGURE 4b. For the 
remaining pair {B, C), B wins if and only if y> 2; here the T2 boundary is the 
horizontal dashed line in FIGURE 4b. 

The pairwise election combinations allow only three (strict) transitive pairwise 
ranking outcomes; no real surprises occur with the pairwise vote. The election 
rankings are denoted in FIGURE 4b with the voter type numbers. Again, by assuming 
that each T2 point is equally likely, the areas of these regions show that the pairwise 
outcomes define the type 4 ranking C >- B >- A (of the beverage example) with 
limiting probability 2, and each of the other two types with limiting probability 4- 

Again, elementary computations using equation (5) show that these limiting values are 
approached with order 1/n. 

Positional outcomes This setting's particular interest is in the conflict among the 
pairwise and WA outcomes. As in Section 3, the WA tally for each candidate is as 
follows: 

Candidate Tally 
A x 

B y y+Az=(l-A)y-Ax +A (8) 
C z + A( x + y) = 1-(1-A)(x + y) 

By setting pairs of tallies equal to each other, the wA outcomes change according to 
the following table of parametrized equations. 

Pair Equation Rotation Pt x-axis Pt 

A -B (I + A)x -(I1-A)y = A 2 2 1 ) + A , o 

A C (2-A)x + (1-A)y =1 (1,-) ( A, o) (9) 

B -C (I (-2A)xr+2(1 -A)y=l -A (0 21) | 1-2A 0) 

A major difference from Section 3 is that the rotation point of each line differs with 
each pair. As we will see, this is what causes new kinds of election outcomes to occur. 
The boundary lines, and the resulting division of profiles identified with the plurality 
(A = 0), Borda (A = -), and antiplurality (A = 1) voting systems, are represented in 
FIGURE 5 (The three rotation points are indicated by the solid dots.) 

These figures immediately disclose all sorts of conflicting election outcomes. For 
instance, the square defined by the dotted lines are all profiles defining the C >- B >- A 
pairwise ranking. The A = 0 portion of FIGURE 5 shows that these pairwise rankings can 
be accompanied by any plurality ranking. In other words, expect conflict; the table (1) 
example demonstrates only the one possibility of a A >- B >- C plurality outcome. 
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,'A>-' ,' A>-1B C>-B A >-1B 
/ I I~~~~~~~~~~~~~~~~~~~~~ 

5\ V 

C/ '6B ", ' C , 
4 , 

\ , \ C>: C - B 

A= ' 3= 2 2 4 2 1 
A\ A>C A X - AC 

\ \ I 

- A>-C~~~~~~~~~~A> 

FIGURE 5 
Computing wA outcomes. 

Moreover, it appears from these figures (and we show next why it is true) that the 
same serious conflict holds for all WA where 0 < A < 2 

To find even more fascinating changes, notice the importance of the profile which 
defines a completely tied WA election outcome. By being on the boundary for all wA 
ranking regions, this point identifies how election rankings vary with A. We already 
know there are significant changes because for A = 0 the point is at the safe (, 3 
location (with one voter for each of the three preferences); it moves to the T2 
boundary at ( 2) when A = 2; it vanishes at infinity when A = 1. These changes in 
position are direct consequences of the different locations of the rotation points for 
each pair. 

This observation suggests that important information about election behavior is 
obtained by plotting how this point of a completely tied election varies with A. This 
point is the intersection of the A B and B C boundary surfaces, so, by solving 
these equations for (x, y) in terms of A, the equation for this point is 

(Y) ( 1+A 1_A+A2) 0<A 1 (10) 

or, because A = 3x - 1, 

1-3x+3x2 1 1 
Y 2 2-3x x+3 3(3x-2) 

This curve is plotted in FIGURE 6 along with the A = 0 boundary lines. The 
accompanying magnified version shows the translated A = 4 boundary lines. 

As FIGURE 6 offers a wealth of information about election behavior, so we describe 
only what happens to the profiles in the square defined by the dotted lines (with a 
C >- B >- A pairwise ranking); analysis of the other regions is left to the interested 
reader. First, the fact that the curve approaches infinity as A -> 1 is what allows the 
A = 1 figure to have parallel, vertical boundary lines; this is true for no other A value. 
Consequently, for all A < 1, at least two different WA strict rankings accompany the 
C >- B >- A pairwise outcomes. Because the point of complete ties leaves T2 only after 
the Borda Count, for A < 2 any conflicting WA ranking can accompany these pairwise 
rankings. 
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FIGUR 5 6 
4 L A~~~~~~~~~~~~ 

FIGURE 6 
Locus of the completely tied points. 

This curve also determines how WA rankings change with a fixed profile. To indicate 
the analysis, consider a profile p located between the curve and the A B plurality 
line. Although the plurality election ranking for p is A >- B >- C, as A increases in 
value the WA complete tie point moves along the curve forcing different ranking 
regions to cross p. This can be illustrated with the magnified version of a portion of T2 
in FIGURE 6 which shows the A = 4 regions. If p has a type 4 election outcome for A - 
then p already produced election outcomes of types 1, 6, and 5 for earlier A values. As, 
table (4) shows, p has the property that each candidate wins with the appropriate WA. 

Furthermore, counting tied outcomes shows that each profile in the region between 
the curve and the A B plurality boundary line admits seven different election 
rankings for different WA procedures. (A similar argument shows that profiles below 
the curve and with the A >- B >- C plurality election outcome have seven rankings 
where each candidate is bottom-ranked with some WA.) 

The next natural question is to find the smallest number of voters allowing the 
peculiarity that anyone can be elected. This requires finding a point (x, y) in this 
region with the smallest possible common denominator. Because (x, y) must satisfy 

< x < 2 and y < x, while being above the curve (so y > 1), we start by seeking a 
point with least common denominator so that < y < x < . This point is (jTy, Tj4), so 

examples require at least eleven voters. As the first point above the curve is 189 17) 

the desired profile involves nineteen voters. It is 

Number Preferences 

8 A C > B 
7 B C>A (>-) 

4 C B >- A 

where A E ( 4, 1j1) ensures the victory of B. 
We can find even more. The limiting probability of this peculiar behavior depends 

on the area between the curve and the A = 0 boundary line for A B (that is, the line 
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y = x). This area is 

f; (2X-3+3(3x 2)) dx 12 n 
3 

By considering only the profiles in the square (with area 4), the limiting probability is 
four times this value, or - _ln 2 = 0.0253. 

A small selection of the election behavior attributed to profiles restricted to the 
"beverage-type" preferences follows. 

THEOREM 3. Suppose the profiles are restricted to preferences from the beverage 
exaniple. With limiting probability 6 - 2In 2, it is possible for a profile to elect all 
three candidates when the ballots are tallied with different wA methods. The profile 
must have at least 19 voters; the smallest such profile is given in table (11). When 
restricted to where the pairwise votes define the C >- B >- A ranking, the probability of 
this behavior is 34- ln 2. 

The election phenomenon where each canclidate is botton-ranked with some WA 

procedure has limiting probability I - - _ ln 2] = Iln 2 = 0.1540. (WVhen restricted 
to the profiles with C >- B >- A pairwise outcomes, the probability is 0.308.) All such 
profiles involve at least nine voters; a nine-voter example results if two voters are 
removedfromn each type in table (1). 

For A = 0 the limniting probability of all six possible strict outcomes are equal. For 
the Borda Count, there are four possible strict outcomes. The limiting probability of a 
type 2 or type 3 outcome is -1, of a type 4 outcome is y7, and of a type 5 outcome is 
41. For the antiplurality vote, the limiting probabilities for the type 3 and 4 outcomes 
are, respectively, 4 and 4. 

5. Symmetry 

We have discussed only two of the (6) possible cases. However, by exploiting the 
symmetry admitted by voting, we have nearly completed the analysis. 

Neutrality To introduce the first symmetry, suppose that, for totally unexplained 
reasons, everyone in the beverage example of table (1) confused Beer and Wine. (For 
instance, a ranking listed as M >- W >- B was intended to be M >- B >- W.) It is easy to 
correct this mistake: if all voters interchanged Wine and Beer on their ballots, then 
we just interchange Wine and Beer in the election outcomes. 

This property, where if eveiy voter permutes the names of the candidates in the 
same manner, then the election outcome experiences a similar change, is called 
neutrality. More precisely, if o- is a permutation of the names of the candidates, then 
let o-(p) be the profile where these changes occur for each voter in the profile p. 
Then a voting procedure f satisfies neutrality if for any permutation of names o- and 
for any profile p we have 

f (-(p)) = o-(f(p)). (12) 

Neutrality converts our analysis in Section 4 of what happens when voters have 
types (2,4,5) into what happens when voters have types (1,4,5). This is because, 
according to table 1, the second situation is obtained from the first by flipping the 
triangle about the B C axis. In mathematical terms, by interchanging B and C 
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names in each ranking of the first setting, we obtain the second one. Thus, the two 
settings are related by equation (12) and the permutation interchanging B and C. 

Other permutations and the resulting settings are listed below. This symmetry and 
the (2,4,5) prototype account for six of the 20 possibilities. 

Setting Permutation Setting Permutation 

(2,4,5) Identity (1,4,5) B C,C B 
(2,3,5) A->B,B ->A (1,3,6) A -C,-C A (13) 
(2,3,6) A -B, B -> C,C -A (1,4,6) A -> C,C -> B, B -A 

Similarly, neutrality converts the analysis of Section 3, where voters' preferences 
come from {1, 3,51 types, into the setting where voters' preferences come from 
{2, 4,61. Here, any transposition, such as A -> B, B -> A suffices. This accounts for 
eight of the 20 cases. 

Reversal To introduce the next voting symmetry, suppose for the beverage 
example of table (1) that each voter misunderstood the instructions and marked the 
ballots in a completely reversed order. For instance, voters who marked their ballots 
as M >- W >- B really meant B >- W >- M. If this reversal holds for all voters, then it is 
reasonable to assume that the election ranking can be corrected by reversing the 
original one. Namely, if p represents the operation of reversing a ranking, it is natural 
to assume that 

f( P(P)) = P(f(P)) 

The only difficulty with this assumption is that, in general, it is false. To illustrate with 
the beverage example, apply the plurality vote to the bottom-ranked candidates to 
discover that, when preferences are reversed, the plurality election outcome remnains 
M >- B >- W, with a 9:6:0 tally. 

To discover what does occur with reversal symmetry, recall that the alntiplurality 
vote requires a voter to vote against his or her bottom-ranked candidate. Thus, it is 
equivalent to voting for our bottom-ranked candidate and then reversing the outcome. 
So, if we apply the plurality vote to p(p) and reverse the resulting ranking, we obtain 
the antiplurality ranking for p. (Readers may wish to carry out this computation with 
the beverage example of table (1).) The following theorem asserts that the same 
reversal effect applies more generally. 

THEOREM 4. (See [6].) Let f(p,WA) be the WA election ranking for profile p. All 
profiles p and positional methods satisfy 

f(p, WA) = p(f( p(p)),W1-A)) (14) 

Equation (14) allows us to handle six more of the (6) cases. To illustrate what 
happens, some details are given for what we call the "reversed beverage" example, 
where the preferences are denoted by FIGURE 7a. As A is top-ranked by two types of 
voters and bottom-ranked by the remaining type, it is reasonable to expect no election 
surprises. This is not the case; instead, the election behavior is very similar to that 
described in Section 4. Indeed, the reason for the similarity of outcomes and the 
"reversed beverage" nomenclature comes from comparing FIGURE 4a and FIGURE 7a. 
Each letter x, y, and z is reversed relative to the complete indifference point. We 
emphasize the consequences of this reversal. 
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C 

1B>-A 
C>-A 

C >-1 2 

x 

1 5 
A B1 

a. Admitted types b. Triangle T3 

FIGURE 7 
The reversed beverage example setting. 

One aspect of reversing preference is apparent by comparing FIGURE 4b and 7b: the 
figures agree, but the rankings are reversed. This reversal continues with the following 
table, which catalogues information about the wA boundary lines: 

Pair Equation Rotation Pt x-axis Pt 

A -AB T(2 -A)x -Ay =I- A 2 (2> 2 (2A'0) 

A-C (l+A)x+Ay= (1,-i) (+A,o) (15) 

B-C (1-2A)x-2Ay=-A 2(o) |(jA,0) 

To convert table (15) into table (9), let = 1 - A. This means that the analysis of 
table (15) is exactly that of Section 4, except that w1l- assumes the role of wA; for 
example, the antiplurality and plurality methods swap roles, properties, illustrating 
examples, and peculiarities. This is, of course, a special case of equation (14). For 
instance, the antiplurality (A = 1) outcome is C >- B >- A for (x, y) = ( ' , 5 ) from 
FIGURE 7a. As this profile is the reversal of the beverage example equation (1) with 
plurality (A = 0) outcome A >- B >- C, the outcome is as Theorem 4 requires. 

An easy way to use Theorem 4 to convert results from Section 4 to the current 
setting is to add or subtract 3 from all of the type numbers of FIGURE 5 and FIGURE 6, 
and replace statements about A with statements about 1 - A. This completes the 
analysis for the reversed beverage examples. It means, for instance, that only nine 
voters are needed to create an example where all candidates can be elected with some 
wA and that the likelihood of this occurring is higher than the likelihood of each 
candidate being bottom-ranked by some procedure. Namely, the reversal of prefer- 
ences reverses the conclusions obtained from FIGURE 6. Only the Borda Count has 
essentially identical conclusions for both settings; this is because A = 1 is the only 
procedure allowing wA = W-A Incidentally, this symmetry condition turns out to be a 
technical reason which ensures that the Borda Count has strongly favorable proper- 
ties. 

By applying this analysis along with equation (14) to all of the settings in table (13), 
we account for six more settings. This leaves only six more to consider. 
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Final case The final situation is where voters come from types 1, 2, and 3. There 
are no real surprises in the analysis, so it is left for the interested reader. By use of the 
symmetry of neutrality, the same analysis extends to the six remaining cases. 

6. Summary 

Surprisingly subtle, unexpected election behaviors can arise when voters are restricted 
to only three kinds of preferences. Of particular interest is that the questions raised in 
Section 1 about potential paradoxical election behavior can be answered by using 
elementary geometric arguments. As shown, conflict between pairwise and positional 
methods occurs in abundance and, when it occurs, it is supported by an open set of 
profiles. (This answers the robustness question.) Problems about the likelihood of 
strange behavior, or finding supporting profiles with the minimum number of voters, 
reduce to elementary arguments. Moreover, the geometry allows us to "see" where 
conflict occurs and to determine whether paradoxical outcomes are, or are not, 
isolated. For instance, FIGURE 6 identifies the profiles where each candidate wins with 
an appropriate WA method. So, when preferences are restricted as indicated, we must 
expect such pathological behavior in about 1 in 40 elections (with a sufficient number 
of voters). As shown by FIGURE 7, other settings increase the likelihood of this behavior 
to about 3 in 20 elections. 

Although we emphasized those election surprises that occur when voters' prefer- 
ences come from only three possible types, other surprises already occur when 
preferences are restricted to only two types. Indeed, this is a special case of our 
analysis because it just requires setting one of x, y, or z equal to zero; it is the 
behavior on one of the edges of the triangles T1, T2, or T3. For instance, by 
considering the vertical leg (where x = 0) of the triangles in FIGURE 5, we discover how 
this highly restrictive case allows two strict pairwise rankings to be accompanied with 
conflicting wA outcomes. Without question, elections admit surprising behavior. 
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Global Positioning System: 
The Mathematics of GPS Receivers 

RICHARD B. THOMPSON 
University of Arizona 

Tucson, AZ 85721 

Introduction 

GPS satellite navigation, with small hand-held receivers, is widely used by military 
units, surveyors, sailors, utility companies, hikers, and pilots. Such units are even 
available in many rental cars. We will consider the mathematical aspects of three 
questions concerning satellite navigation. 

How does a GPS receiver use satellite information to determine our position? 

Why does the determined position change with each new computation, even though 
we are not moving? 

What is done to improve the accuracy of these varying positions? 

We will see that receivers use very simple mathematics, but that they use it in 
highly ingenious ways. 

Being able to locate our position on the surface of the earth has always been 
important for commercial, scientific, and military reasons. The development of 
navigational methods has provided many mathematical challenges, which have been 
met and overcome by some of the best mathematicians of all time. 

Navigation by means of celestial observation, spherical trigonometry, and hand 
computation had almost reached its present form by the time of Captain James Cook's 
1779 voyage to the Hawaiian Islands. For the next 150 years these methods were used 
to determine our location on land or sea. In the 1940s electronic navigation began 
with the use of fixed, land-based, radio transmitters. The present-day LOng RAnge 
Navigation (LORAN-C) system uses sequenced chains of such transmitters. 

The use of satellites in navigation became common in the 1970s, with the introduc- 
tion of the Navy Navigation Satellite System (NAVSAT or TRANSIT). This system 
uses the Doppler shift in radio frequencies to determine lines of position and 
locations. 

The Satellites 

Almost all satellite navigation now uses the Global Positioning System (GPS). This 
system, operated by the United States Department of Defense, was developed in the 
1980s and became fully operational in 1995. The system uses a constellation of 
satellites transmitting on radio frequencies, 1227.60 mHz and 1575.42 mHz. 

The original design of the system provided for eighteen satellites, with three 
satellites in each of six orbits. Currently, there are four satellites in each orbit. In the 
basic plan, the six orbits are evenly spaced every 600 around the Earth, in planes that 
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FIGURE 1 
The System of Satellites. 

are inclined at 550 from the Equator. Orbits are circular, at a rather high altitude of 
20,200 kilometers above the surface of the Earth, with periods of twelve hours. 
FIGURE 1 displays one configuration of the basic eighteen satellites. Although not 
drawn to scale, it gives the correct feeling that we are living inside a cage of orbiting 
satellites, several of which are "visible" from any point on the surface of the Earth at 
any given time. 

Receivers 

Current GPS receivers are electronic marvels. They are hand-held, run on small 
batteries, weigh as little as nine ounces, and can cost under $150. We can turn on a 
receiver at any point on or above the surface of the Earth and, within a few minutes, 
see a display showing our latitude, longitude, and altitude. The indicated surface 
position is usually accurate to within 100 meters, and the altitude is usually in error by 
no more than 160 meters. 

How does a small radio receiver listen to a group of satellites, and then compute our 
position, with great accuracy? We start by noting exactly what sort of information is 
received from the satellites. Each satellite sends signals, on both of its frequencies, 
giving (i) its position and (ii) the exact times at which the signals were transmitted. 

The receiver also picks up time signals from the satellites, and uses them to 
maintain its own clock. When a signal comes in from a satellite, the receiver records 
the difference, At, in the time at which the signal was transmitted and the time at 
which it was received. If the Earth had no atmosphere, the receiver could use the 
speed, c, of radio waves in a vacuum to compute our distance d = c At from the 
known position of the satellite. This information would suffice to show that we are 
located at some point on a huge sphere of radius d, centered at the point from which 
the satellite transmitted. However, the layer of gasses surrounding the Earth slows 
down radio waves and, therefore, distorts the measurement of distance. Receivers can 
partially correct for this by allowing for the effect of mean atmospheric density and 
thickness. Information from several satellites is combined to give the 
coordinates-latitude, longitude, and altitude-of our position in any selected refer- 
ence system. 

Several factors restrict the accuracy of this process, including: (i) errors in the 
determined positions of the satellites; (ii) poor satellite positioning; (iii) limitations on 

This content downloaded from 129.93.16.3 on Thu, 10 Oct 2013 00:04:57 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


262 MATHEMATICS MAGAZINE 

the precision with which times and distances can be measured; and (iv) the vaxying 
density of Earth's atmosphere and the angles at which the radio signals pass through 
the atmosphere. Some of these difficulties are overcome by the use of an ingenious 
plan that provides the key to GPS technology. It is rather complicated to explore this 
method in the actual setting of positioning on the Earth: The distances are large, the 
time differences are small, and the geometry is all in three dimensions. Fortunately, 
we can capture most of the salient features of GPS receiver operation in a simple 
two-dimensional model. 

A Simple Model 

Suppose that you are standing somewhere in a circular lot, with a radius of 100 ft. The 
lot is paved, except for an irregularly-shaped gravel plot that surrounds you. The mean 
distance from your position to the edge of the gravel is 20 ft. Cars circle the lot on a 
road. To determine your position, messengers leave from cars on the road and walk 
straight toward you. When such a messenger arrives, he tells you where and at what 
time he left the road. You have a watch and know that all messengers walk at a rate of 
5 ft/sec on pavement but slow down to 4 ft/sec on gravel. Our model is shown in 
FiGURE 2. 

| \ f C~~~~ravrel ] 

Pavement 10 f 

FIGURE 2 
The Model. 

Consider a rectangular coordinate system with its origin at the center of the lot. 
Distances will be measured to tenths of a foot, and time will be measured to tenths of 
a second. The location of a point on the road will be described by its angular distance 
from due north, measured in a clockwise direction. 

At noon a messenger leaves a position 45? from north. When he arrives, your watch 
shows that it is 20.2 seconds after noon. Since you have no way to know the exact 
distance that he walked on the gravel, you assume that he covered the mean distance 
of 20 ft. At 4 ft/sec, this took him 5 sec. For the remaining 15.2 sec he walked on 
pavement, covering 5 ft x 15.2 sec = 76.0 ft. Allowing for the assumed distance of 20 
ft on the gravel, you know that you are located at some point on a circle of radius 96.0 
ft, centered at the starting location of the messenger. 
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A second messenger leaves the road at a point 1350 from north at 12:01 pm and 
walks to your position. On his arrival, your watch shows that it is 29.5 sec after he 
started. Assuming that he took 5 sec to walk 20 ft on the gravel, he walked 5 ft/sec 
24.5 sec = 122.5 ft on the pavement. Hence, you are on a circle of radius 142.5 ft, 
centered at this messenger's point of departure. 

The coordinates of the departure points for the two messengers are P1 = (100 
sin 450, 100 i cos 450) and P2 = (100 sin 1350, 100 cos 1350), respectively. Using our 
precision of one tenth of a foot, these are rounded to (70.7 70.7) and (70.7,- 70.7). 
Thus, the coordinates (x0, yo), of your position satisfy { (xO - 70.7)2 + (yo - 70.7)2 96.02 

(xo - 70.7)2 +(yo+ 70.7)2 142.52J 

The system has two solutions, ( - 20.0, 39.2) and (161.4,39.2), rounded to tenths. 
Since the latter point is outside of the lot, you can conclude that you are located 20.0 
ft west and 39.2 ft north of the center of the lot. The situation is shown in FIGURE 3. 

PI 

(xo, yo) 

P., 

FIGURE 3 
Twvo Messengers. 

pi 

P3 

FIGURE 4 
Three Messengers. 

So far so good. Suppose that, just to be careful, you decide to check your position 
by having a third messenger leave the road at a point 1800 from north and walk to 
your location. He leaves at 12:02 pm and, according to your watch, arrives 32.2 sec 
later. As before, you compute your distance from this departure point P3. FIGURE 4 
shows the result of adding information from the third messenger to your picture. 

What has happened? The mnost likely problem is that your watch does not agree 
with the times used at the departure points on the road. Suppose that your watch runs 
steadily but has a fixed error of e seconds, where a positive e means that your watch 
is ahead of the road times and a negative e means that your watch is behind the road 
times. If we let At be the time difference between departure and arrival, as shown on 
your watch, then the estimate for the distance traveled is 

d(At, e) = 20 ft + (At sec - e sec - 5 sec)5 ft 
sec 

Thus, the radius of each circle is in error by the same amount, -5 e ft, and there 
must be a value of 8 for which the three circles have a common point. FIGURE 5 shows 
the effect of various watch errors. 
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P. 2 P p2 P3 PI P3 

e= -1lsec e-1sec E= 3 sec E= 4 sec 

P. p., 2 P*3 p( P p /2 p2 

E=5sec E 6sec E= 7sec E=9sec 

FIGURE 5 
Effect of Watch Error. 

It appears that your watch has an error of approximately 5 sec. The error and the 
coordinates of your position are a solution for the following system of equations: 

( xo - 70.7)2 + ( y0 - 70.7)2 = d(20.2, 8)2 

(x - 70.7)2+ ( y0 + 70.7)2 = d(29.5, 8)2 ) 

( xo - 0.0)2 + ( yo + 100.0)2 = d(32.2, )2 ) 

The system can be solved numerically, starting with seed values of 0 for e and 
estimated coordinates of your position for x0 and yo. There is only one solution giving 
a location inside of our lot. Rounding this to our level of precision yields (x0, yo, 8) = 
(10.9,31.2,4.9). You conclude that you are 10.9 ft east and 31.2 ft north of the center 
of the lot, and that your watch is 4.9 sec fast. You note the coordinates of your 
position, and discard the watch error, which is of no further interest to you. 

As this example of our GPS model shows, you can use time difference information 
from three messengers to determine your position, relative to a coordinate system in 
the lot. The only tools needed for this effort are a steady, but not necessarily accurate, 
watch and the ability to approximate the solution of a system of three equations in 
three unknowns. 

Back to the Satellites 

Our "lot" is now the region inside of the satellite orbits (including the Earth), "cars on 
the road" are satellites, "messengers" are radio waves, and "gravel" is the Earth's 
atmosphere. We take the center of the Earth as the origin in our coordinate system. 
Working in three dimensions, we need information from four satellites. Call these S1, 
S2, S3, and S4; and suppose that Si is located at (Xi, Yi, Zi) when it transmits a signal 
at time Ti. If the signals are received at times Ti', according to the clock in our 
receiver, we let A ti = Ti' - Ti, and let e represent any error in our clock's time. The 
receiver allows for the mean effects of passage through the Earth's atmosphere and 
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computes distances d(Ati, 8) that indicate how far we are from each of the satellites. 
Our position (x0, yo, z0) is located on each of four huge spheres. In most situations, 
there will be only one sensible value of e that allows the spheres to have a point in 
common. Our location is determined by solving a system equations. 

(xo - XI2 + ( yo ( yX2 + ((zo ) Z2 = d(Atl, 8)2 

( XO - X2 )2 + ( Yo 
_ 

y2)2 + ( Zo - Z2 )2 = d( At2, 8)2 

l( xo - X3 )2 + ( YCO - Y3 )2 + ( ZO _ Z3 )2 = d( At3, 8)2 

(x -X4) 2 + ( yO - Y4)2 + ( zO - Z4) = d(At4, 8 J 
When a numerical solution is found, the rectangular coordinates (x0, Yo' Z0) are 

converted into the essentially spherical coordinates of latitude, longitude, and altitude 
above sea level. 

As a practical matter, there are times and locations when a GPS receiver can 
receive usable data from only three satellites. In such cases, a position at sea level canl 
still be found. The receiver simply substitutes the surface of the Earth for the missing 
fourth sphere. 

To summarize our results so far, the receiver is expected to (i) receive time and 
position information from the satellites, (ii) maintain a steady (but not necessarily 
accurate clock), (iii) select four satellites with a good range of positions, (iv) find an 
approximate numerical solution for a system of four equations, and (v) make a 
transformation of coordinates. Given the current state of electronics, these are easy 
tasks for a small hand-held instrument. 

Variability of Positions 

Our second question about GPS positioning causes a great deal of discussion and 
confusion among those who use the system. If a person stands in one fixed location 
and determines repeated positions with a receiver, the coordinates of these positions 
tvill vary over time. Since the observer's location has not changed, the changing 
positions are often attributed to alteration of the satellite signals by the Department of 
Defense. The Department does, at times, degrade the satellite data and cause a loss of 
GPS accuracy. This Selective Availability (SA) will be phased out within the next few 
years. (It is stated that SA is used for reasons of national security.) However, 
manipulation of the signals explains very little of the variation in positioning. The 
variation is primarily caused by random errors in measurement, the selection of 
different satellites, and by the effects of the atmosphere. We will illustrate these 
problems by returning to our simple 2-dimensional model. 

In our example, you determined that the coordinates of your position were 
(10.9,31.2) and that your watch was 4.9 seconds fast. Suppose that these values are 
exactl? correct. After a couple of minutes you again use three messengers to 
determine your location. This time the first messenger leaves from the road at a point 
that is 47.2? from north. Rounding to your level of precision, you record the departure 
point as P1 = (73.4,67.9). In this case we will assume that your information on the 
location of the departure point is not quite correct, and that the messenger actually 
left from Q, = (74.1340,67.3568). This is only a 1.0% error in the first coordinate and 
a 0.8% error in the second coordinate. Suppose also that the messenger actually 
encountered 25.9 ft of gravel on his way to your position. 
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Keeping track of 6 places, the distance from Q( to your location is 72.841286 ft. 
Covering the 25.9 ft of gravel at 4 ft/sec took the messenger 6.475000 sec, and 
covering the 46.941286 ft of pavement at 5 ft/sec took 9.388257 sec. The actual 
walking time was 15.863287 sec, which with your watch error of 4.9 sec, is 20.763257 
sec. Using the allowed one place of precision, you would note At = 20.8 sec. Recall 
that, as you stand in the lot, you have no way of knowing the amount of gravel over 
which a messenger has walked. Hence, you always assume the mean distance of 20 ft. 
Under this assumption, the messenger would take 5 sec to cover the gravel, leaving 
15.8 sec to walk on the pavement. At 5 ft/sec he would cover 79.0 ft. You conclude 
that the messenger has traveled 99.0 ft, and that you are at that distance from P1. 

To find your position, messengers leave from the road at points 138.5? and 8.10 
from north. You record these departure points as P2 = (66.3, - 74.9) and P3 = 
(14.1,99.0). Now suppose that your information is slightly incorrect, and that the 
departure points are actually Q2 = (66.8404, - 75.6490) and Q3 = (13,9731,98.0100). 
In addition, assume that the second messenger walked over 22.1 ft of gravel and that 
the third messenger walked over 12.0 ft of gravel. Working in the same way as you did 
for the first messenger, you record time differences of 30.1 sec and 18.9 sec for the 
second and third messengers, and solve the following system of equations. 

(xo - 73.4)2 + ( yo - 67.9)2 = d(20.8, 8)2 

( xo - 66.3)2 + ( yo + 74.9)2 = d(30.1, 8)2 

(xO - 14.1)2 + ( yo _ 99.0)2 = d(18.9, 8)2) 

The solution, when rounded, gives your location as (xO, Yo) = (5.4,32.3) and your 
watch error as 4.4 sec. Small errors in the location of the departure points, variation in 
the amount of gravel covered, and the rounding of numbers to one-place have 
produced a "position" that is 5.61 ft from your actual location of (10.9,31.2). 

We can let a computer simulate what happens if you stay in your fixed location and 
make repeated computations of your position. Each determination of a position is 
made with the following assumptions. (i) Three points of departure for messengers are 
picked at random, assuming that the angle between any two points of departure is at 
least 30?, but not more than 150?. (ii) The distance over which a messenger must walk 
on gravel is a normal random variable with a mean of 20 ft and a standard deviation of 
5 ft. (iii) The relative error in each coordinate of the point of departure is a normal 
random variable, with a mean of 0 and a standard deviation of 0.3%. 

It is common to discuss accuracy of positioning in terms of circular errors of 
probability (c.e.p.). The n% c.e.p. is the distance, d 1, such that the probability of an 
error that is less than or equal to dn is n%. A set of 1,000 simulated positions allowed 
us to estimate c.e.p.'s for our model. We found d50 = 2.11 ft and d95 = 7.69 ft. (It is 
interesting to note that one simulated position was 16.9 ft from the correct location.) 
The positions computed in a run of 50 simulations are plotted on the left side of 
FIGURE 6, along with circles of radii d50 and d95. Our probabilistic model yields 
results that agree quite well with plots of successive positions found with an actual 
GPS receiverfrom a fixed location. 

Commercially available GPS units operate under what is called the Standard 
Positioning Service (SPS), measuring distances using satellites' 1575.42 mHz fre- 
quency. Under the best circumstances, the 50% c.e.p. for the SPS is 40 meters. As we 
mentioned, selective availability adds a small amount of random error into the SPS. At 
almost all times the 50% c.e.p. is no more than 100 meters, with a common value 
being around 50 meters. Under these conditions, the 95% c.e.p. for SPS is 
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FIGURE 6 
Simulations. 

approximately 100 meters. As in our model, almost all of the variability in SPS 
positions comes from random errors that are inherent in the components of the 
system. 

PPS and Differential GPS 

What is done to remove somne of the random errorsfrom GPS positions? At the present 
time, there are two common methods of improving GPS accuracy. One of these is the 
Precise Positioning Service (PPS), which is available for governmental use only. This 
uses signals transmitted on both of the GPS frequencies to eliminate much of the 
variability caused by the Earth's atmosphere. Just as with various colors of light in 
the visible spectrum, the reduction in the speed of a radio wave as it passes through 
the atmosphere depends upon its frequency. Hence, measurements of the arrival 
times of two signals of different frequencies can be used to greatly improve the 
accuracy of our distance estimates. 

As before, the situation is most easily understood in terms of our simple two-dimen- 
sional model. To model the PPS we will suppose that each messenger is accompanied 
by an assistant, who also walks at 5 ft/sec over pavement. However, while the 
messenger walks at 4 ft/sec over gravel, the assistant is slowed to 3 ft/sec when 
walking on gravel. We will return to our first example of the variability of positions 
and see what improvement in accuracy results from knowledge gained with assistant 
messengers. 

Recall that your location in the lot has coordinates (10.9, 31.2), and that your watch 
error is 4.9 sec. The first messenger departed from Q, = (74.1340,67.3568) and 
walked over 25.9 ft of gravel while covering the 72.841286 ft to your position. With 
your watch error, you recorded a time difference of At = 20.8 sec. 

The assistant messenger will require 8.633333 sec to cover the 25.9 ft of gravel at 3 
ft/sec and 9.388257 sec to cover the paved part of the route at 5 ft/sec. Hence, his 
total walking time will be 18.021591 sec. Due to the error in your watch and the 
allowed level of precision, you record an elapsed time of As= 22.9 sec for the 
assistant messenger. The time differences for the messenger and the assistant messen- 
ger give you enough information to estimate the amount of gravel that lies between 
you and the point of departure on the road, and to estimate the total distance from 
your location to the point of departure. If we let G be the number of feet of gravel 
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and let D be the total distance, in feet, then we have the following system of linear 
equations: 

{20.8= D-G + G 5 4 

22.9= D-G + G 5 3 

Solving the system at your level of precision, you conclude that the messenger and 
his assistant crossed 25.2 ft of gravel, and came 97.7 ft from their point of departure. 
Thus, as best you can tell, you are at some point on a circle of radius 97.7 ft, centered 
at the nominal point of departure P1 = (73.4,67.9). 

Similarly, suppose the second and third messengers also have assistants. Computa- 
tions similar to those above show that the second messenger traveled 144.8 ft, 
including 22.8 ft over gravel, and that the third messenger traveled 91.5 ft, including 
12.0 ft over gravel. (These values include any possible watch error.) Your estimate for 
the actual distance that a messenger has traveled is now a function of the distance, G, 
of gravel covered; the time difference, At; and your watch error, 8. 

G ft ft 
d(G, At, 8) = G ft + At sec- 8sec- ft 5 sec 

This distance formula and the three points of departure lead to a system of 
equations whose solution (x0, yo, s) gives an estimate of the coordinates for your 
position and for the error of your watch. t (x0 - 73.4)2 + ( yo - 67.9)2= d(25.2, 20.8, 8)2 

( x0 - 66.3)2 + ( y0 + 74.9)2 = d(22.8, 30.1, 8)2 . 

( x0 - 14.1)2 + ( yo 
_ 99.0)2 = d(12.0, 18.9, 8)2) 

Solving this system, at your level of precision, yields a position of (x0, yo)= 
(9.2, 31.6) and a watch error of 4.8 sec. Your current estimate is only 1.75 ft from your 
correct location of (10.9,31.2). This compares with an error of 5.61 ft found by using 
single messengers. 

A computer-generated set of 1,000 simulations for positions computed with messen- 
gers and assistants gave estimates of 0.50 ft and 1.90 ft for the c.e.p.'s d50 and d95, 
respectively. The maximum distance of a computed position from the actual location 
was 3.41 ft. These simulations were based upon the same conditions that we used for 
our model of the SPS. The positions computed in a run of 50 simulations for our 
model of PPS are plotted on the right side of FIGURE 6, along with circles of radii d50 
and d95. Comparison of the two sides of FIGURE 6 shows that there is a considerable 
gain in accuracy when most of the variation due to distance walked over gravel is 
eliminated. 

In the real world of satellites and positions on the Earth, the use of two radio 
frequencies in the PPS produces considerably more accuracy than can be obtained 
with the single-frequency SPS. It is believed that the PPS has a 50% c.e.p. of 
approximately 16 meters. 

A second method for improving the accuracy of the usual SPS locations is coming 
into use at airports and major harbors. This is called the Differential Global Position- 
ing System (DGPS). Most of the error in a GPS position is due to random variables in 
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the atmosphere and the satellite system. Hence, within a small geographical area, the 
error at any instant tends to be independent of the exact location of the receiver. 
DGPS exploits this situation by establishing a fixed base station, whose exact location 
is already known. Equipment at the base station computes its current "GPS position," 
compares this with its known location, and continuously broadcasts a correction term. 
A DGPS receiver in the area receives its own satellite information and computes its 
position. Simultaneously it receives the current correction from its base station, and 
applies this to its computed position. The result is a very accurate determination of the 
receiver's position; 50% c.e.p.'s for GDPS run close to 9 meters. 

Conclusions 

The very ingenious idea of leaving clock error as a variable allows a GPS receiver to 
display our position on the Earth at any location and at any time, using nothing more 
than simple algebra. The variations in computed positions are almost entirely due to 
inherent limitations on precision within the system. A second clever plan allows the 
use of two radio frequencies to eliminate much of the variability caused by the passage 
of signals through the Earth's atmosphere. 
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A Convergence of Limits 
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Las Cruces, NM 88003-8001 

Introduction 

When in doubt, generalize. That's often good advice for mathematicians, and we 
follow it here to great advantage. Intrigued by a striking similarity between recursive 
algorithms for approximating the arctangent and the natural logarithm, we look for a 
simple theory that includes both. There are certainly enough connections between the 
two functions to make a common source likely, even though the algorithms seem to 
have disparate geometrical origins. Instead of focusing on these special cases, we 
broaden our search, and examine a general method for producing convergent se- 
quences in recursive form. As we study it, a simple pattern emerges, answering the 
original questions and leading to some unexpected additional results. 

We find a simple relation between a type of recursion formula and the limit of the 
sequence it generates. We discover a single formula unifying our algorithms for the 
arctangent and the natural logarithm, and that's what produced the similarity. We find 
other interesting examples; one unifies recursive algorithms for computing the arcsine 
and the inverse hyperbolic sine. Along the way, we'll see some interesting examples of 
how mathematics develops. More importantly, we'll leave an idea that undergraduates 
can use for independent investigations, with a real opportunity to make new discover- 
ies. 

A deeper analysis of a family of recursive algorithms for approximating a number of 
transcendental functions appears in the 1971 article by B. C. Carlson [1]. For each 
choice of fi and fj from the list 

fi(x,y)=2(x+y), f2(x,y)= xy 

f3(X, y) = Vxf1(X, y), f4(X, y) = Vyf1(x, y)I, 

and for each xo, Yo > 0, he showed that both the sequences {xj} and {yn} defined 
recursively by 

X11+1 =fi( Xn v Yn) v Yn+1 =-fj( Xn Yn) 
converge to an integral determined by i and j and involving x0 and yo as parameters. 
The use of such recursive sequences to compute transcendental functions has a long 
history, going all the way back to Gauss; Carlson gives a lengthy bibliography. Clearly 
our results are related to his, but the exact relationship is far from clear; the methods 
employed are certainly different. 

The Arctangent and the Natural Logarithm 

Connections between the arctangent and the natural logarithm are known to every 
student of calculus, since both arise as integrals of rational functions. The connections 
become much stronger when the functions are extended to complex arguments; 
Euler's formula for e"0 is probably the most concise expression of the relationship 
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between circular and exponential functions. Euler's formula has its origins in the 
relationship 

arctan z = 2i log 
I 
1 iz-)' 

discovered in differential form by John Bernoulli in 1702. Not many years later, 
R. Cotes found a logarithmic version of Euler's formula; he published it under the 
title Harrnwuia Mensurarum since it brought together measurements for the circle 
and the hyperbola. The history of this formula is outlined by J. Stillwell in Chapter 15 
of [4]. 

A simple recursive algorithm for computing arctangents may have been known by 
Archimedes, even if the modern vocabulary wasn't. The key ideas are all present in his 
approximation of X by perimeters of circumscribed regular polygons; the change that 
results from doubling the number of sides is not too hard to analyze. Since the 
arctangent measures directed arc length on the unit circle, we can approximate it in 
much the same way as we find the arc length of the whole circle. We form a sequence 
of circumscribed polygonal paths, all tangent to the arc at its endpoints; the first has 
two segments and one corner. We form the next by cropping the corner symmetri- 
cally. Instead of thinking of the second path as having one long and two short 
segments, we think of it as four equal segments, each extending from a corner to a 
point of tangency. At each stage, the next path will be formed by cropping all the 
corners in the same way, so the nth polygonal path in the sequence is made up of 2n 
equal segments and has 2n-i corners. 

The details are simple to work out if we introduce Cartesian coordinates, so that 
arctan x corresponds to the arc of the unit circle between the y-axis and the ray from 
the origin through (x, 1). FIGURE 1 shows the important relationships. The figure on 
the left shows how the first path is formed; the one on the right shows how the second 
path is formed from the first. Referring to the sketch on the left, our first approxima- 
tion to arctan x is 2s, and it's easy to calculate s. Since radii and tangents meet 
orthogonally, the triangle with vertices (s, 1), (x, 1), and (x/ X2 , 1/x2 + 1) is 
similar to the one with vertices (0, 0), (x, 1), and (0, 1). Their corresponding sides are 
proportional, so 

x-s s 

(s, 1) (x, 1) 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 
FIGURE 1 

Forming circumscribed paths. 

This content downloaded from 193.255.248.150 on Thu, 25 Dec 2014 16:47:07 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


272 MATHEMATICS MAGAZINE 

Solving for s yields 

x 

1? +X2? 

The same formula can be used when x < 0, since the sign of s agrees with the sign 
of x. More importantly, we can use it to find the length of each of our approximating 
paths. 

Since the nth path is formed by 2 " equal segments, our nth approximation to 
arctan x is An(x) = 2nsn(x), with s,,+,(x) calculated from s,,(x) exactly as sl(x) = s 
was calculated from x: 

sn1+1( X) = ( 
1 + Vsn(X)2? 1 

Rewriting this in terms of {A j(x)}, we obtain the recursive formula 

A11+1(x) = 2A-(x) for n 2 0; 
1+ 22nA,(x)2+1 

starting with A0(x) = x gives arctan x as the limit of this sequence. 
Our recursive algorithm for the natural logarithm is almost as elementary. It's based 

on the formula 

lnx= lim n( -1). 
in -- oo 

This arises in many ways; the most elementary is an explicit calculation of frxt-1 dt 
as a limit of Riemann sums. Instead of making Atk constant, we partition the inter- 
val of integration into subintervals with endpoints at x k /n for k = 0, 1,2,...,m, 
making tk lAtk constant instead. Fermat used a similar partition to show 
fx tn dt = xn + /(n + 1). (For details, see Appendix A.4 of Simmons [3].) The quantity 
rn( x - 1) is an upper sum for f xt-1 dt when x > 1, and for 0 < x < 1 it's an upper 
sum for fS1 - t' dt. FIGURE 2 shows the approximation for x = 3 and m = 4. 

(in Instead of using the whole sequence {n( - 1)}, we restrict our attention to 
mn = 2 ". That accelerates the convergence, and the resulting subsequence is simpler to 
compute. All the roots we need are successive square roots, so we can calculate them 
recursively. To make the term with n = 0 be x instead of x - 1, we shift the 

2- 

1.5 

0 
0 1 2 3 4 

FIGURE 2 
Approximating the natural logarithm. 
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argument and approximate In (x + 1) instead of In x. Defining 

Qnx) =2n (+ - 1) 

we see that Lo(x) = x and 

L,1+((x) =2n ' 2'IL(x + 1 -2 = 2L(x) 
-~~~~ ~1+ 2L1x+ 

We rewrote our recursion formula as a fraction for two reasons. The last version is 
computationally superior; loss of significant digits in the square root as 2-nLn(x) -> 0 
is no longer a problem. Just as importantly, it brings out the similarity between our 
two recursive algorithms. The similarity increases when we write the limits of the two 
sequences as integrals: 

dt _ < ~ 
lim Aj,( x) = arctan x = + ,- < x < oo, 
II--- 00 t + 1 

and 

lim Ln(x)=ln(x+x )=f +dti, x> -1. 

Something seems to be happening here. To explain it, we need a general theory that 
includes both examples. 

Generating Recursive Algorithms 

An abstract method for deriving similar algorithms is suggested by examining closed- 
form expressions for both our sequences: 

Aj( x) = 2'tan (2-'arctan x), 

Ln(x) = 2n ( i-i) = 2" [exp{2-nln(x + 1)} -1]. 

Both have the form G,,(x) = 2 F(2-n G(x)), where F is the inverse of G. In both 
cases F(O) = 0, and that makes 

lim Gn(x) = lim F(tG( x)) -F(O) F'(0)G( tX tt 

Both have F'(P)= 1, and so G,,(x) -> G(x). There's also a common reason why we 
can write the sequences recursively: in both cases we know how to write F(ly) in 
terms of F(y). 

In general, that last condition is the hard one to carry out, even though it's easy in 
theory. Knowing F and G, we can define a halving function H by the formula 
H(x) = F( G(x)); then for x = F(y) we obtain F( y) = H o F(y). Then 

Gn + 1 ( x)) = 2nH'F(2-- Gx 2 o F(2-G( x)) = 2n+'H(2 Gn( x)) 

gives us a recursion rule for a sequence starting with GO( x)= F(G(x)) = x and 
converging to G(x). 

In practice, finding an explicit formula for H can be impossible, because we may 
lack a useful formula for F or G. Since H gives us an algorithm for computing G, it's 
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especially useful to be able to find it in these cases. Fortunately, there's a reasonable 
way to recognize the halving function when we see it, and it explains the relationship 
between H and the derivative of G. We state it formally; the proof is quite simple. 

THEOREM. Let I be an interval containing the origin in its interior, and let g be a 
positive, continuous function on I, with g(O) = 1. Let H: I -> I be a solution of the 
initial value problem 

dH g(x) H(O)=O. 
dx =2g(H)'H()=0 

Then the sequence {Gn(x)}0,,o defined recursively by 

Go(x) = x, G1,+,(x) = 2n+lH(2-?Gn(x)), 

satisfies 

lim Gj( x) g(t) dt, all xeI. 
n - oo o 

Proof. If we define G on I by the formula G(x) = foxg(t) dt, then G is continuous 
and strictly increasing on I with G(O) = 0; it is also differentiable, with G'(x) = g(x). 
The range of G is therefore an interval J with 0 in its interior, so the inverse F of G 
is a differentiable function mapping J onto I and satisfying F'(P) = l/g(O) = 1. Thus, 
for each x e I, 2-nG(x) ej for each nonnegative integer n, and 2'F(2-'G(x)) -> 

G(x). To complete the proof, we need only show that H is the appropriate halving 
function. 

Define a function <I on I by the formula 

@D(x) = 2G(H(x))-G(x), x G I. 

Since H(O) = G(O) = 0 we have <(0) = 0, and 

,V( x) = 2g( H( x)) H'( x) -g( x) = 0, all x E I. 

Hence <I = 0 on I, and so 

Go H(x) = 2G(x), all xeI. 

Applying F to both sides yields 

F( G( x)) =F(G o H( x)) = H( x), 

and the proof is complete. 

In principle, one can find H by solving the initial value problem stated in the 
theorem. The differential equation can be solved by separation of variables, yielding 

f0Hg(t) dt = 1 g(t) dt, 

but that may be a long way from finding an explicit formula for H(x). A much easier 
task is verifying that a given function is a solution of the differential equation, and 
sometimes it isn't too hard to guess a solution. 
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Examples 

Our first example includes our recursive algorithms for the arctangent and the natural 
logarithm. Let a and b be arbitrary real numbers, and let I be the interval containing 
0 on which ax2 + bx + 1 is positive. Define g and H on I by the formulas 

g( x) = a2+1 H(x)= X 
ax + bx1? a+?bx+ 

Simple algebraic calculations show 

1 aH (X)2 + bH( x)1+ I 2(aX2 + bx + 2 + + (bx + )ax2+bx+ 
g( H(x)) (1 ax2x1 

and so 

g(x) 2 ax2+bx+1 +bx+2 
2g(H(x)) 2 2 b 1 ( + ax2+bx+1) 

It's easy to show that this agrees with H'(x), so our theorem says the recursively 
generated sequence 

G0(x) =x, G.+1(x)= 2G.(x) 
1 + Va[2 -nGn( X )2 + b[2 -nG( X)] + 1 

satisfies 

lim G,, ( x x 
dt 

lGn x)J = |at2 + bt+ I 
for all finite x such that the interval of integration contains no singularities. 

Our next example comes from the arcsine function; the half-angle formula for the 
sine tells us what the halving function should be. We can include a parameter in g 
and H: 

g(x) a , , H(x)= 2 x 

Differentiating H( x)2 and simplifying the result leads to the identity 

2 xg( x) = 2H( x) H'( x), 

and simplifying aH( x)2 + 1 leads to 

xg( H( x)) = 2H( x). 

Division then shows 

- g(x) = H'(x). 
2g(H(x)) 

The case a =-1 corresponds to an algorithm for the arcsine, while a = 1 gives the 
inverse hyperbolic sine. 
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Our final example involves a pair of lesser-known transcendental functions we 
found in Carlson [1]. They are the inverse lemniscatic sine 

arcsl x =X dt 
oj 1 t4 

and its hyperbolic twin 

arcslh x = dt 
o 1+t4 

Historically, these integrals are quite important; an identity for the first, discovered by 
G. C. Fagnano in 1718, spurred Gauss's study of elliptic functions. Stillwell gives an 
account of these developments in [4]. 

The inverse lemniscatic sine has a simple geometric interpretation in terms of the 
curve defined parametrically by 

x t , y = 1t+/-t2, -1<t<1. 

It's plotted in FIGURE 3, along with the chord subtended by the image of [0, 0.9]. The 
parameter t is a geometric one, since X2 + y2 = t2. The curve is easily recognized as 
following a lemniscate, since 

X2 y2 = t4 =(x2 + 2)2 

the polar form of this equation is r2 = cos 20. We've parametrized the portion in the 
first and third quadrants. An elementary calculation shows 

( dx) ( dy 9 1 
dt kdt) I_t4 

Thus the integral defining arcsl x represents directed arc length along the curve, with 
the argument x corresponding to directed chordal length. The inverse lemniscatic 
hyperbolic sine derives its name from the analogy with the integrals defining the 
arcsine and the inverse hyperbolic sine, rather than from a geometric interpretation of 
the integral. 

0.3?I\ 

0.2. 

0.1 

-1 -0.5 0 0.5 1 
-0.1 

\ ~/ 
-0.2 

-0.3 

FIGURE 3 
The curve defining arcsl x. 
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Fagnano found the duplication formula 

2 z V1- z4 Z ~__1 arcsl x = 2arcsl z, where x = 4 and z2?<i-il; 

we solved for z to obtain a halving function. Once again we can insert a parameter to 
treat both arcsl x and arcslh x with a single formula. Defining 

g(x) 1 and H(x)= X1/2 
1+ax ~ ' (221a4 +1I+ i +ax4) 

yields 2 H'(x) = g(x)/g(H). The calculation justifying this equation is lengthy; we 
omit it. 

Analyzing the Convergence 

It's easy to use the closed-form expression 

G,( x) = 2'F(2-'G( x)) 

to establish the rate of convergence of {G(x)}; just use a Taylor expansion of F. For 
example, our sequence {L,( x)} converging to ln (1 + x) satisfies 

Ln( x) = 2 
" 

[exp (2 -n In (I + x)) -1] 

[ln (1 + x )]2 [ln(1 + X )]3 = ln(1 +x) + 22l + 3! + 

Unless I ln( 1 + x) I is quite large, thirty to forty iterations of the formula will achieve 
the same level of accuracy available on most hand-held calculators. Comparable 
accuracy can be obtained more quickly by using Richardson extrapolation, a technique 
described in most introductory numerical analysis texts (see, e.g., [2]). In particular, 
using 2Lnll(x))- Ln(x) leaves an error on the order of 2-2n instead of 2 . 

It would be interesting to find additional examples where H and G or g are both 
known explicitly; we certainly haven't exhausted all the possibilities. There's lots of 
room for experimentation here, and very little knowledge is needed to do it. In 
addition to starting with g and trying to find H, it's also possible to start with H and 
use the recursive sequence to define G. But then it's a real challenge to identify G in 
terms of familiar functions. 

Acknowledgment. I thank the referees for a number of helpful suggestions. 
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Introduction For a square to be inscribed in a triangle, one side of the square must 
rest on one side of the triangle and the other two vertices of the square must lie on 
the other two sides of the triangle. We define a square to be inscribed in an angle if 
one side of the square rests on one side of the angle, a third vertex is on the other side 
of the angle, and the fourth vertex is in the interior of the angle. These definitions 
include obtuse angles if the square is permitted to rest on an extended side of the 
triangle (or angle). With this extended definition of inscribed, the results of this paper 
are also valid for obtuse angles and obtuse triangles. Examples are shown in FIGURE 1. 

FIGURE 1 
Examples of inscribed squares. 

For right triangles there are only two squares that can be inscribed, and an 
interesting classic problem is to determine which square is the smaller. This problem 
was posed in a recent Rose-Hulman alumni magazine. We received about thirty 
solutions, with at least six essentially different methods. A dissection solution of this 
problem for an isosceles right triangle is given in [1]. It turns out that, for any right 
triangle, the inscribed square with its side along the hypotenuse is always smaller. 
What can be said about squares inscribed in non-right triangles? 

If the triangle is not a right triangle then there will be three inscribed squares, each 
with one side resting along a triangle side. In this case it can be shown that the longer 
the common triangle side, the smaller the corresponding inscribed square. We will call 
this the ordering property. Martin Gardner [2] has written an enjoyable article 
concerning inscribing and circumscribing using rectangles, squares, and triangles. He 
describes a method for constructing a square inscribed in a triangle and also 
references a construction given by Polya [3]. A short proof of the ordering property for 
acute triangles is given in [4] using some trigonometry. This proof can be easily 
extended to include obtuse triangles. 

278 
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In this paper, we give two different proofs of the ordering property. The first is 
based on some results about squares inscribed in angles. For the second proof, we 
consider triangles of fixed area and determine how the length of the side of an 
inscribed square varies with the length of the triangle side on which it rests. Both of 
these proofs are geometric and both lead to some interesting related results. 

Congruent squares inscribed in angles Consider triangle ABC and the congru- 
ent squares PQRS and P'Q'R'S' inscribed in angle CAB, with QR resting on side AB 
and Q'R' resting on side AC (FIGURE 2). Let M be the intersection of QP and Q'P' 
and let N be the intersection of RS and R'S'. The right triangles AQPand AQ'P' are 

C 

P s 

NSt 

A Q Pi R B 
FIGURE 2 

Congruent squares inscribed in angle CAB. 

congruent and thus the right triangles AQM and AQ'M are congruent. Hence angles 
QAM and Q'A'M are congruent and line AM bisects angle CAB. 

Also AR = AR' and thus the right triangles ARN and AR'N are congruent. Hence 
the line AN also bisects angle CAB and the points A, M, and N are collinear. The 
corresponding vertices of the squares are symmetrical with respect to this bisector and 
thus the line through S and S' is perpendicular to the bisector. 

If side AC is longer than side AB and if the squares both grow larger while 
remaining congruent, the vertex corresponding to S' will reach side BC before the 
vertex corresponding to S reaches this side. The square corresponding to P'Q'R'S' 
will then be inscribed in triangle CAB. The square corresponding to PQRS continues 
to grow until it is inscribed in the triangle as the vertex corresponding to S reaches 
side BC. Hence the inscribed square, whose side is along the shorter triangle side 
AB, is larger than the inscribed square along the longer side AC. This proves the 
ordering property. Note that if the triangle were isosceles (BA = CA), then S and S' 
meet BC simultaneously since SS' is parallel to BC. In this case these two squares 
inscribed in the triangle are congruent. 

A collinearity for pairs of inscribed squares For two congruent squares, PQRS 
and P'Q'R'S', inscribed on opposite sides of an angle at A, we have shown that the 
points A, M, and N are collinear. Surprisingly, these points are also collinear even for 
a noncongruent pair of squares. Consider the inscribed squares shown in FIGURE 3, 
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C 

R' 

Qt 

A - B 

M D 

)N 

h 
F 

FIGURE 3 
Line of intersection for squares inscribed in an angle. 

where QR and Q'R' lie on AB and AC respectively. Let M be the intersection of 
the lines through QP and Q'P' and N be the intersection of the lines through RS 
and R'S'. Let F be the intersection of the lines through Q'P' and SR. Let MD and 
NE be the line segments perpendicular to the line segments SF and Q'F respectively. 

The following sequence of congruences ( _), similarities (-), and equalities 
demonstrate the result: 

AMDF A PQA, NE_P'Q', A MNF_ - APP'A, 

AMDN A PP'QP, QA AQP -'Q MQP', MQ = Q AAQP~AMQP' QA QP' 

P'Q ND 
QP = DMI IL MQA 

- 
ANDM, ZIQAM- DMN. 

Hence A, M, and N are collinear. We will call this line the line of intersections of the 
two inscribed squares. 

FIGURE 4 shows a triangle, its three inscribed squares, and the three lines of 
intersection. It would be nice if the lines were concurrent, but this is not the case in 
general. 

FIGURE 4 
Lines of intersection for the three angles of a triangle. 
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Length of the side of a square inscribed in a triangle of fixed area Consider a 
triangle of area A with an inscribed square resting on a side of length x (FIGURE 5). 
Let h be the altitude of the triangle and s the length of the sides of the square. 

FIGURE 5 
A square inscribed in a triangle of area A. 

The given triangle and the shaded triangle are similar, and thus 
h-s h xh 2Ax 

s x x+h x2+2A 

where h = 2 A/x since A = hx/2. This formula is also given in references [21, [41, 
and [5]. FIGURE 6 is a graph of the above equation showing how s varies with x for 
fixed A. 

s 

x 
a 42 A/a 

FIGURE 6 
Length of the side of an inscribed square as a function of the 

length of the triangle side on which it rests. 

The maximum point on this curve can be found by calculus or by the following 
variation of completing the square. Let f(x) = l/s; then 

x 2+2A x 1 I_ 
f(x) 2A 2A + x = 2 [x/V+V/x 

gx [(/ 
V 2 - CV--A x )+ 2] 

When the squared term above is zero, f assumes a minimum. Thus s assumes a 
maximum value at x = V2iA. Note that at the maximum, the area of the square is 
s2= A/2 (half the area of the triangle). Indeed, at this maximum, h = x = ?. Also 
note that f(2 A/a) =f(a) (FIGURE 6). If x 2 va then the expression inside the 
parentheses is negative and f(x) is monotone increasing, and thus s(x) is monotone 
decreasing. Similarly if 0 < x < I_A, then the expression inside the parentheses is 
positive and s(x) is monotone increasing. 
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Now let a and b be the lengths of two sides of a triangle of area A, and sa and Sb 

be the lengths of the sides of the corresponding inscribed squares. To prove the 
ordering property we must show that b > a implies Sb < Sa This follows from the 
monotonicity of s when a ? 2 A. 

When a < V2 A, we no longer have monotonicity but we can show that b is large 
enough to ensure Sb <Sa In this case 2 A/a> 2 A and we have shown that 
s(2 A/a) = s(a) (FIGURE 6). Also if hb is the altitude of the triangle to side b (FIGURE 7) 
is then A = bhb< ba and thus b ? 2 A/a. Since s(x) is monotone decreasing for 
x > 2 A/a then Sb < Sa This completes this proof of the ordering property. 

a ib 
b 

FIGURE 7 
Triangle of area A and altitude hb. 

Triangles whose sides all exceed 2A If the given triangle is equilateral with 
sides of length x, then A = x24//4 and thus x > 2 A. In this case the lengths of all 
three sides are greater than 2 . We will show that this is not the usual case and, in 
fact, "most" triangles have exactly one side with length less than 2 A. First note that 
if c is the longest side (or one of the long sides in the isosceles case) of a triangle, and 
hc the altitude to this side then 2 A = chc < ca < c2. Thus the length of the longest 
side of a triangle is always greater than 2 A. 

The investigation of the lengths of the two shorter sides will be done numerically. 
To simplify the computations, we choose length units so that the longest side 
has length one. Let a and b be the lengths (relative to the longest side) of the two 
shorter sides, then the area of the triangle is given by Heron's formula 
A = /S(S - 1)( S - a)( S - b) , where S = (1 + a + b)/2. To see when side a is less 
than 2 , we plot in FIGURE 8 the pairs of points (a, b) satisfying the equation 

b 
i1.5 

o 1.5 a 

FIGURE 8 
a4 = 4A2 for (a, b) on the light curves and b4 = 4A2 on the heavy curves. 
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'p~~~~~~~~3 

FIGURE 9 
Triangles with (a, b) in the shaded region have all sides exceeding V2A. 

a4 = 4A2 (light lines). The region inside these two "bow ties" corresponds to 
a4 < 4Aa. And similarly, the heavy lines correspond to b4 = 4A2 and b4 < 4A2 in 
their interior. 

FIGURE 9 is that part of FIGURE 8 with the restrictions 0 < a < 1 and 0 < b < 1. The 
(a, b) domain is also restricted by the triangle inequality a + b > 1. Since a > 0 and 
A > 0 then the inequality a4 < 4A2 is equivalent to a < VfX A and likewise for the 
corresponding b inequality. Let Ra be the region in FIGURE 9 such that a < va and 
Rb the region with b < V A. Thus a < V A if and only if (a, b) is in Ra, and b 
< v127A if and only if (a, b) is in Rb. In the shaded region, both a and b are greater 
than W7A7. The point (1,1) corresponds to equilateral triangles. The point 
(V2/2, V2/2), where the two curves are tangent to each other, corresponds to 
isosceles right triangles with a = b = V27A. 

Determining the areas of these regions by numerical integration shows that the 
probability that all three sides of a triangle have lengths exceeding V|-7Kis 0.134. 

We now give a second method for calculating the probability that all the sides of a 
triangle exceed V-A. We first prove the following preliminaxy result. Consider a 
circle (FIGURE 10) with center at K and radius r. Let PS be a chord of length u and PQ 
a line segment of length v tangent to the circle at P. Then the area of the shaded 
triangle PQS is vu2/4r. 

To prove this, we let L be the midpoint of the chord and M be the point on PQ 
such that SM is perpendicular to PQ. Then the right triangles KLP and PMS are 
similar since angle PSM is congruent to angle KPL. Thus U/2 h_ where h is the r u 
length of the altitude SM. Hence the area A of triangle PQS is given by 

P M 

FIGURE 10 
Triangle PQS with two vertices on the endpoints of a chord PS of length u, 

the third vertex on a tangent line through P. 
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P = 
FIGURE 11 

Triangle PQR with a < b < 1 has all sides exceeding v A7 when R is in the shaded region. 

A = vh/2 = vu 2/4r. If r = 1/2 and v = 1, then A =U2/2. 
We now consider a triangle PQR with longest side PQ of length one, PR of length 

a, and QR of length b with a < b (FIGURE 11). R must lie in the left half of the unit 
square with base PQ since a < b. Also R must lie inside the unit circle with center Q 
since b < 1. The area of the region with these boundaries is ir/6 - V3/8 -0.307. If 
a > V/27A then from the above preliminary result, R must lie outside the circle with 
center at the midpoint of the left side of the unit square and with radius = 1/2. This 
region is shaded in FIGURE 11; its area is 

(12 - 3v'3 - 51r + 12arcsin 3 + 3arcsin 4)/24 _ .0667. 

Thus the probability that the lengths of all three sides of a triangle exceed V2-A is 
.0667/.307 _ 0.217. 

It was surprising that the probabilities were different for the two methods, so we 
checked the results by using Monte Carlo simulation and found good agreement with 
the analytical results in both cases. The explanation is that, in the first calculation, we 
chose the lengths of the two shorter sides at random; in the second calculation, we 
chose the coordinates of the third vertex at random. A third method of calculation is 
to choose, at random, the two angles adjacent to the longest side; in this case the 
probability turns out to be 0.115. 

This unexpected behavior of probability results based on continuous densities was 
first observed by Joseph Bertrand in 1889 and is known as Bertrand's paradox [e.g., 61. 
His problem was to determine the probability that the length of a random chord of a 
unit circle will exceed C3. He found three different answers depending on what 
coordinate system is chosen for the uniform continuous sample space. A brief 
description of this problem with some animation can be found on the Internet [7]. 

Acknowledgment Our thanks to George Berzsenyi for his help and encouragement. 
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An Unexpected Maximum 
in a Family of Rectangles 

LEON M. HALL 
ROBERT P. ROE 

University of Missouri-Rolla 
Rolla, MO 65409-0249 

Introduction The genesis for this paper was Problem 749 from the Macalester 
College problem-of-the-week series: 

MACALESTER PROBLEM 749. Given a square A1 A2 A3A4 and a point P inside the 
square. The lengths of PA1, PA2, and PA3 are 4, 3, and 10, respectively. What is the 
length of PA4? 

The reader is encouraged to try to solve the problem now, before proceeding. In 
our solution to this problem we realized that A1 A2 A3A4 need not be a square. This 
observation led to the study of families of rectangles that satisfy hypotheses like those 
of Problem 749, and ultimately to this paper. 

A quick solution to Problem 749 is provided by Theorem 1, which is a special case 
of Feuerbach's Relation (see [4] or [6]). 

THEOREM 1. If P is any point in the plane of rectangle A1 A2 A3A4, and if ai is the 
distance from P to Ai, then E 4= 1 1)za 2 = 0. 

A1 A4 

A2 A.-3 
FIGURE 1 

al + a3 = a2 + a2. 

Thus, an ordered triple of distances from a point P to three consecutive vertices of 
a rectangle uniquely determines the distance from P to the fourth vertex, but does 
not uniquely determine the rectangle. For instance, let a, a2, a3, and a4 be given 
with E4=.(- 1)'a2 = 0. If vertex A2 of the rectangle is fixed at the origin and P is on 
the circle F with center A2 and radius a2, then vertices A3 and A1 will be on the 
x- and y-axes, respectively, and vertex A4 will be determined by the positions of A3 
and A1. As P moves around F, the rectangle changes. See FIGURE 2. 

We used The Geometer's Sketchpad to explore various properties of the rectangles. 
The software allowed us to keep al, a2, a3, and a4 fixed while moving the point P 
around the circle F, thus showing how the rectangles change. A natural question 
arises: When is the area of the rectangle an extremumn? Although the perimeter is not 
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Al A4 Al A4 

a, a IA a4 
a4 

A, A3 A, A3 

FIGURE 2 
Two rectangles with the same ai's. 

constant, a reasonable-sounding guess was that the extrema occur when the rectangle 
is a square. Alas, experiments using the area computation feature of The Geometer's 
Sketchpad indicated that this guess was incorrect. We solve the area-optimization 
problem in the last section. 

Another natural question is to describe the locus of A4 under the construction 
given above. The "trace locus" feature of The Geometer's Sketchpad shows, when a2 
is the smallest distance, that this locus is a closed curve that resembles a guitar pick. 
See FIGURE 3. If a2 is not less than both a3 and al, then the rectangle does not exist 
for P on certain arcs of the circle F, and the locus of A4 will be a disconnected curve. 
In the next section we discuss the equations for the locus of A4. 

y 

x 

FIGURE 3 
A 'guitar pick' traced by vertex A4. 

In our search of the literature we discovered that problems related to Problem 749 
have a long history. For example, an old problem in geometry is to construct a 
specified kind of triangle when the distances from a point in the plane of the triangle 
to its vertices are given. Geometry problem 151 in the June-July 1901 Anerican 
Mathematical Monthly [3] gave the distances from a point to three corners of a 
square, which is equivalent to specifying a right isosceles triangle. Baker [1] says the 
problem in [3] is a variation of Rutherford's problem, in which the triangle is 
equilateral. When the triangle is equilateral and the distances are 3, 4, and 5, 
Rabinowitz [5] and Gregorac [2] call the problem the 3-4-5 puzzle. Many other 
references may be found in [5]. Walter [7] considers distances of 3, 4, and 5 to three 
consecutive vertices of a rectangle. Several generalizations have been studied, such as 
letting the distances be a, b, and c ([3], [5], [7]), allowing the point from which the 
distances are measured to be above (or below) the plane of the triangle ([7]), replacing 
the triangle by a polygon ([5]), and replacing the triangle by a simplex in Rn with 
n + 1 vertices ([2]). 

The locus of A4 Let a,, a2, a3, and a4 be fixed, with E4=(-11)ai = 0. Relabel the 
points and distances, if necessary, so that a2 is the minimum of the distances with A2 
fixed at the origin. Let the coordinates of A3 be (x, 0), and the coordinates of A1 be 
(0, y). Since P is on the circle F which has radius a2, the coordinates of P are 
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(a2cos0, a2sin0), where 0 is the angle measured from the positive x-axis to A2P. 
Since A3 is on the circle with center P and radius a3, 

(x - acos 0)2 + ( a2sin 0 )2 = a2. 

One solution to this quadratic in x is 

x=x(0) =a2cos 0+ Va2-a2sin20. (1) 

Similarly, since A1 is on the circle with center P and radius a,, we get 

y = y(6) =a sin 0+ Va 2-a 2 cos20. (2) 

These are parametric equations for the locus of A4, with parameter 0 in [0,27"). 
Taking the positive sign in front of the radicals guarantees that the rectangle will be in 
the first quadrant. 

However, equations (1) and (2) are only one of four pairs of parametric equations 
for the locus of A4. The other three are determined by using the negative square root 
in one or both equations. The four curves are given by 

x = a2COS(0) + (-1)f+l?1 a2_-a2sin2(0) 
Cii~~~~~~~r: m~~~~T,nt = 1,2. 

y = a2sin(0) + (1)i?1 a _a2cos2(0) 

More possibilities arise if we do not require a2 to be the minimum distance. Again, 
there are four cases: (a) a2 < a, and a2 < a3, (b) a2 < a, and a2 > a3, (c) a2 > a, and 
a2 < a3, (d) a2 > a, and a2 > a3. In cases (b), (c), and (d), each of the curves C,,, is 
disconnected. For example, in case (b) the curve Cl1 is given by equations (1) and (2). 
The quantity under the radical in (1) is negative for two 0-intervals, 01 < 0 < 02, and 
03 < 0 < 04. Further, x(02) = -x(01) and x(04) = -x(03). Thus the curve "jumps" 
to the second quadrant when 0 = 02 and "jumps back" to the first quadrant when 
0 = 04. Similar behavior occurs in case (c) with (2), and in case (d) with both (1) and 
(2). FIGURE 4 shows all sixteen possible curves C,,,,, for cases (a)-(d), with the plot 
styles for the curves as shown in FIGURE 4a. 

/ I 

/C1 1Cii\_f QII I~. 

C12 C..' 

(a) (b) 

- 

----r---- 

---- / . *' /s\ * 

(c) (d) 
FIGURE 4 

ai E {1.3,1.5,1.8}. 
(a) a2 < a3 and a2 < al (b) a2 > a3 and a2 < al 
(c) a < a3 and a2 >al (d) a2 >a3 and a2 >al 
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Optimizing the area The area of the rectangle can be expressed in terms of 0. Let 

a(0) = (a2cos 0+ a a2 sin20 ). (asin 0 + a2 _cos20 ). 

From (1) and (2) it follows that the area of the rectangle is A(0) = la(0)| whenever 
a(0) is real-valued. Note that we are not assuming that a2 is the least of the distances 
and that, because of the symmetry of the four curves in each part of FIGURE 4, we can 
restrict ourselves to C.11 

Insight into where A(0) is optimal may be obtained by using Mathematica or 
another computer algebra system to plot A(0), x(0), and y(0) on the same axes for 
O < 0 < 217-. These graphs show that A(0) is not necessaiily largest when the 
rectangle is a square, as our earlier experiments with The Geometer's Sketchpad 
indicated. In FIGURE 5a (in which al = 7, a2 = 3, and a3 = 5) the extrema for the area 

area area 

x I 

0 0 
IT 27- IT 27- 
(a) (b) 

FIGURE 5 
Extrema need not correspond to squares, which may not exist. 

curve do not correspond to intersections of the x and y curves. In fact, the rectangle 
may never become a square, as shown in FIGURE 5b (in which a, = 7, a2 = 1, and 
a3 = 4), where the graphs of x and y do not intersect. 

To optimize A(0), we first find and simplify a'(0). 
2 2 a2) 

aa1 _a2 cos20 a - a2 sin20 

(cos Ova2-a _asin20-sin Ova2 a2 Cos20 ) a( 0). 

The chain rule then gives 

(a2.(COS Oa~ - a2 sin 20 - sin0 a2 - a 2Cos 20) 

t a 8 coao-a co*20 ai ') | 2 a( 0) s 
If a2 exceeds either a, or a3 there will be intervals in which A(0) and A'(0) are 

not real valued. This is illustrated in FIGURE 6 (in which a, = 5.5, a2 = 6, and a3 = 5). 
However, the values of A( 0) and the values of the one-sided derivatives A'+ (0) at the 
endpoints of each of these intervals agree. Hence, A(0) may be viewed as being a 
differentiable function on the interval [0,2 7i] minus the intervals where A(0) is not 
real valued. Thus, the only critical points occur when cos 0 V/a2_a2 sin20 = 
sin Oa 2- a 2cos20. This condition simplifies to tan 0 = + a3/al. The negative is an 
extraneous solution, so the only critical points of interest occur for 0 such that 

tan0= a3/al. (3) 

This content downloaded from 194.27.18.18 on Fri, 22 Jan 2016 06:15:06 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 71, NO. 4, OCTOBER 1998 289 

0 
IT 2 

FIGURE 6 
Graph of A(O) is discontinuous if a2 is greater than a, or a3. 

If 0 < 0 < arctan 
(a3/al) 

then a3/ 
a2 

+ 
a2 

<sin 0 and cos 0< al/ al + 
a2 

. This 
observation implies that A'(0) > 0 for 0 in (0, arctan (a3/al)). Similar reasoning 
shows that if arctan (a3/al) < 0 < 7T/2 then A'(0) is negative. Hence, if 0 satisfies 
(3) and lies in the first quadrant, then the corresponding rectangle has maximum area. 
Analogous arguments show that if 0 satisfies (3) and lies in the third quadrant, the 
corresponding rectangle has minimum area. 

To gain geometric insight into why the extrema occur when tan 0 = a3/al, construct 
the auxiliary rectangle B1 A2 B3 B4 with B3 on the x-axis, B1 on the y-axis, A2 B3 = al, 
and A2 B1 = a3. See FIGURE 7. Then the angle between the positive x-axis and A2 B4 
is the same as the angle for which the area is maximum. Further, rectangle B1 A2 B3 B4 
can be used to determine where P must be on F for a rectangle to exist for a given 
set of distances ai. In the first quadrant, P must lie on the arc of F which is inside 
B1 A2 B3 B4. Outside the auxiliary rectangle, either PA3 > a3 or PA1 > a,. Symmetric 
conditions hold in the other quadrants. The condition tan 0 = a3/al for maximum area 
can also be thought of as describing the angle for the limiting position of P as 

a2 -> a3 + a~ with a2 + a2 fixed. In the special case of a4 = 0, the family of 
rectangles has exactly four congruent members, corresponding to tan 0 = + a3/al. 

The above discussion is summarized in the following theorem. 

a3) B4 
B(O, a.3) 

- 

iax 

A.) B3(a1, 0) 

FIGURE 7 
P must be on the arc inside B1 A2 B3 B4. 
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A1 A4 

0k23 

A, A3 

FIGURE 8 
The angles around P. 

THEOREM 2. If the distances a,, a2, a3, and a4 satisfy >4=j1(_1)'ai = 0 and 
determnine a family of rectangles as described above, then the rectangle with maximnum 
area occurs when the angle 0 is in the first quadrant and tan 0= a3/a1. The rectangle 
with minimum area occurs when the angle 0 is in the third quadrant and 
tan 0 = a3/al. 

Additional results are given as corollaries; proofs are left to the reader. Denote the 
angles subtended from P by the sides of the rectangle by 4ij = Z Ai PAY. 
See FIGURE 8. 

COROLLARY 2.1. When the area of the rectangle is maximum, 012 + 034 - 

023 + 014 = '7 . 

Question: What is the relationship among the >j when the area is minimum? 

COROLLARY 2.2. The maximum area is given by a, a3 + a2 a4, and the mninimum area 
is given by Ia1a3 - a2a4l. Thus, any set {a1, a2, a3, a4} of distances from P to 
consecutive vertices of afamily of rectangles may be pernuted, subject to i4=i1(_ - a2 
- 0, without changing the maximum and minimum areas. 

A second approach to finding these extrema is to use Lagrange multipliers. The 
vectors A2P, PA3, and PAl can be combined to give 

A2A3=A2P + PA3; A2A1A2P+ PA1 

Note that the (signed) area of the rectangle is the product of the first component of 
A2A3 with the second component of A2IA1, and that both the second component of 
A2A3 and the first component of A A> must be 0 since A3 and A1 are on the 
coordinate axes. The problem becomes: Minimize 

a( 0, 423 v 012) = (a2cos 0-a3coS ( 0 + 023))(a2sin 0 + alsin( 012 - 0)), 

subject to the constraints 

a2sin 0 = a3sin( 0 + 023) and a2cos 0 = alcos ( 012 -0) 

Details are left to the readers (or their calculus classes). 
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Counting Integer Triangles 

NICHOLAS KRIER 
BEN NET MANVEL 
Colorado State University 

Ft. Collins, CO 80523-1 874 

Introduction How many triangles with integer sides have a given perimeter? This 
elementary counting problem came up in a geometry class. As we soon found out, the 
answer has been known for a long time. In rederiving that answer for ourselves we 
found the Internet and Maple to be valuable tools. This note describes our experi- 
ences in finding the number t,, of congruence classes of triangles with integer sides 
summing to n, which we will just call integer triangles. 

Data stage Although we guessed that the answer to such a classical problem would 
be known, we did not have a good idea where to look for it. So we began our attack on 
the problem in the most primitive possible way, constructing small triangles. Obvi- 
ously 1, 1, 1 is the smallest integer triple for sides of a triangle, followed by 2,2, 1, then 
2,2,2 and two triangles of perimeter 7: 3,2,2 and 3,3, 1. Continuing in this way, we 
found one integer triangle of perimeter 8, three of perimeter 9, two of perimeter 10, 
and four of perimeter 11. 

These data suggested to us two possible integer sequences. One would list perime- 
ters of all integer triangles, and begin 3, 5, 6, 7, 7, 8, 9, 9, 9, 10, 10, 11, 11, 11, 11. The 
other would list the number of integer triangles of each perimeter, and so would begin 
1, 0, 1, 1, 2, 1, 3, 2, 4. With these sequences in hand, we turned immediately to our 
battered copy of N.J.A. Sloane's classic Handbook of Integer Sequences. Unfortu- 
nately, we came up empty. (We would not have come up empty if we had owned 
the new Encyclopedia of Integer Sequences by N.J.A. Sloane and S. Plouffe.) So 
we turned to our computer, submitting the sequence to Sloane (at AT&T Research) 
by e-mail (address: sequences@research.att.com; subject: none; message: 
lookup 1 0 1 1 2 1 3 2 4). We were quickly informed that the second of our 
sequences was in fact Alcuin's sequence, the coefficients in the power series expan- 
sion of 

X 3, 
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Counting Integer Triangles 

NICHOLAS KRIER 
BEN NET MANVEL 
Colorado State University 

Ft. Collins, CO 80523-1 874 

Introduction How many triangles with integer sides have a given perimeter? This 
elementary counting problem came up in a geometry class. As we soon found out, the 
answer has been known for a long time. In rederiving that answer for ourselves we 
found the Internet and Maple to be valuable tools. This note describes our experi- 
ences in finding the number t,, of congruence classes of triangles with integer sides 
summing to n, which we will just call integer triangles. 

Data stage Although we guessed that the answer to such a classical problem would 
be known, we did not have a good idea where to look for it. So we began our attack on 
the problem in the most primitive possible way, constructing small triangles. Obvi- 
ously 1, 1, 1 is the smallest integer triple for sides of a triangle, followed by 2,2, 1, then 
2,2,2 and two triangles of perimeter 7: 3,2,2 and 3,3, 1. Continuing in this way, we 
found one integer triangle of perimeter 8, three of perimeter 9, two of perimeter 10, 
and four of perimeter 11. 

These data suggested to us two possible integer sequences. One would list perime- 
ters of all integer triangles, and begin 3, 5, 6, 7, 7, 8, 9, 9, 9, 10, 10, 11, 11, 11, 11. The 
other would list the number of integer triangles of each perimeter, and so would begin 
1, 0, 1, 1, 2, 1, 3, 2, 4. With these sequences in hand, we turned immediately to our 
battered copy of N.J.A. Sloane's classic Handbook of Integer Sequences. Unfortu- 
nately, we came up empty. (We would not have come up empty if we had owned 
the new Encyclopedia of Integer Sequences by N.J.A. Sloane and S. Plouffe.) So 
we turned to our computer, submitting the sequence to Sloane (at AT&T Research) 
by e-mail (address: sequences@research.att.com; subject: none; message: 
lookup 1 0 1 1 2 1 3 2 4). We were quickly informed that the second of our 
sequences was in fact Alcuin's sequence, the coefficients in the power series expan- 
sion of 

X 3, 
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In some sense, this solved our problem. We now guessed that the number of 
integer triangles with perimeter n was the coefficient of x" in the expansion of 
expression (1). But we did not know why that was the case. And we did not know 
actual numerical values, beyond those given by the automated reply from Sloane's 
data base. 

The reply from the sequence data base also included three references; two of them 
([1] and [3]) were to articles that explained how the numbers ti, can be computed. We 
found the explanations in those articles more complex than the elegant expression (1) 
warranted, so we looked for a more direct approach. We discovered two rather simple 
explanations for why expression (1) works; these are presented in the next two 
sections. 

We also realized that an actual formula for the number of triangles with a given 
integer perimeter could be obtained by finding the partial fraction expansion of 
expression (1). Maple made this rather daunting task far more fun than it would 
otherwise have been. We describe in the final section of this note the process we 
followed to find the following formula for the number tit of integer triangles: 

6n2 + 18n -1 
1_)n+l 

2n + 3 c (2) n 288 +-) 32 (2) 

where c = 7, - 17, 1, or 25, as n is congruent modulo 12 to (0 or 9), to (1, 4, 5, or 8), 
to (2, 7, 10, or 11), or to (3 or 6). 

Reference [1] shows that, in fact, the greatest integer function L x] and the nearest 
integer function {x} can be used to write the numbers tn in the following way: 

n= { n [ [ + 21 (2') 

Reference [2] establishes an even more user-friendly formula for t,n namely 

( ( 48 ) if n is even; 

tnJ (n{ 3 2} (2"1) 
n+3) if n is odd. 

Counting by threes For the rest of this note we denote the integer sides of our 
triangle of perimeter n by a, b, and c, with a ? b ? c. Our first derivation of the 
generating function (1) for the numbers tn begins with the following observation. 

LEMMA. Forn even,t,1 =t1_. Fort nodd,tn =tn-3 + n + (n)4 

44 
Proof. We note first that subtracting one from the length of each side of an a, b, c 

triangle with perimeter n will usually result in an a - 1, b - 1, c - 1 triangle with 
perimeter n - 3. The triangle inequality requires that b + c > a, so shrinking works if 
(b - 1) + (c - 1) > (a - 1) (or b + c > a + 1) also holds. Thus shrinking will work 
unless the triangle we start with has sides satisfying the equation b + c = a + 1. In 
that case, however, the original perimeter is 2a + 1. So if the original perimeter is 
even, tit = tit-3' If n is odd, then shrinking works for all a, b, c summing to n except 
in the case that b + c = a + 1. With a + b + c = n, this reduces to a = (n - 1)/2 and 
b + c = (n + 1)/2. Thus tn is equal to tn-3 plus one for each solution to b + c = 
(n + 1)/2 with b and c positive integers, b ? c. Two examples will illustrate the 
general case. If n = 9 then b + c = 5 so c could be 1 or 2. If n = 11 then b + c = 6 so 
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c could be 1 or 2 or 3. More generally, if n-1 (mod 4) then b, c can be chosen in 
(n - 1)/4 ways, and if n 3 (mod 4), then b, c can be chosen in (n + 1)/4 ways. 
This completes the proof. 

Now suppose that t(x) is the generating function for the number of integer 
triangles with perimeter n, so that 

t(x) =t0 + tlX + t2 X2 +***. 

Then 

x3t(X) =tox3 +t1x4 +t2X5 +***. 

After subtracting, we find 

(1 -X3)t( X) = to + tlx + t2x2 + (t3 -to) X3 + (t4 -tl) X4 + (t5 -t2) X5 + 

Since to t0 = =t2 = 0, the lemma above reduces the preceding equation to 

(1 X3)t( X) = X3 + X5 + 2x7 + 2x9 + 3x" + 3x'3 + 

X(1 + x2)(1 +2X4 +3X8+ )=X3(1 + X2 1 

therefore, 

t(x) =x 3(1 + X2) __ _ _ __ _3 __ _ _ _ 

(1-x3)(1-X4)(1-X2)(1 + X2) (1-X2)(1-x3)(1-X4) 

Counting by constructing Expression (1) can be expressed rather less tidily as 

x3(1+x2+X4 + XI + )(1 + X + X6 + X9 + )(1 + X4 + X8 + X12 + ). (3) 

The coefficient tn of x" in this expression is obtained by combining terms from the 
four factors in every way that gives a total power of n. The x3 factor encouraged us to 
think of constructing triangles beginning with the 1, 1, 1 triangle and adding various 
amounts to the sides. We introduce the method we found for adding total lengths in 
multiples of 2, 3, and 4 to arrive at all the different triangles by first describing it in 
terms of taking lengths away. 

The three complicated factors in the product correspond to three kinds of opera- 
tions used to reduce a triangle. We reduce a given triangle with sides a, b, and c (with 
a ? b ? c) to the 1, 1, 1 triangle by repeating the following steps (we name each side 
according to its original length): 

1. Subtract one from each of the sides a and b. 
2. Subtract one from each of the sides a, b, and c. 
3. Subtract two from side a and one from each of sides b and c. 

In expression (3), the X3 term corresponds to our objective, the 1, 1, 1 triangle. Our 
choice of terms from the second, third, and fourth factors determines how many times 
the steps 1, 2, and 3 above are applied to reduce a, b, c to 1, 1, 1. The remarkable fact 
is that each integer triangle can be reduced using a uniquely calculable number of 
each of these operations. 

Example. We reduce a 14, 12,7 triangle to the 1, 1, 1 triangle. First note that the 
longest side is 2 larger than the second longest side. Thus we will need two uses of 
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step 3, the only step that reduces the difference between the two longest sides. We 
subtract 2, 1, 1 twice from 14, 12,7 to produce a 10, 10,5 triangle. The two (now 
equal) longest sides are now 5 larger than the smallest side, so we use step 1 five times 
to reduce to a 5,5,5 triangle. Finally, we use step 2 four times to reduce to the 1, 1, 1 
triangle. 

More generally, this sort of reduction must use step 1 exactly b - c times, step 2 
exactly c - a + b - 1 times, and step 3 exactly a - b times. Thus the a, b, c integer 
triangle, a ? b > c, is counted in the coefficient of expression (3) that comes from the 
product 

x3 2(b-c) 3(c-a+b-1) x4(a -b) 

The triangle a, b, c can be built up by adding to the edge lengths of the starting 
triangle 1, 1, 1 the edge lengths of the following triangles, two of which are degener- 
ate: 

u = b - c copies of the "triangle" 1, 1, 0 (perimeter 2) 
v = c - a + b - 1 copies of the triangle 1, 1, 1 (perimeter 3) 
w = a - b copies of the "triangle" 2, 1, 1 (perimeter 4) 

The sides are added in the order specified to the sides to be made a, b, c, respectively. 
Totalling the lengths placed on each side, we find the largest side has length 
1 + (b - c) + (c - a + b - 1) + 2(a - b) = a. The next side has length 1 + (b - c) + 
(c-a +b-1)+ (a-b)=b, and the last side has length 1 +(c-a +b-1)+ 
(a - b) = c. Notice that any triple of numbers a, b, c with a ? b ? c that satisfies the 
triangle inequality b + c > a will produce a triple u, v, w of non-negative integers. 
Thus every integer triangle contributes 1 to the appropriate coefficient of expression 
(3). Conversely, any term t'= t3(t2)u(t3)v(t4)tv in the expansion of expression (3) 
determines sides 

a=l+u+v +2w, b=l+u+v+w, and c=l+v+w 
of an integer triangle, since a triple a, b, c determined in this way satisfies a ? b ? c 
and b + c > a. Thus the building-up process we have described corresponds exactly to 
the terms of expression (3). 

Example. The 14, 12,7 triangle gives us the values b - c = 5, c - a + b - 1 = 4, 
a - b = 2. So it contributes 1 to the term t3(t2)5(t3)4(t4)2 in the product (3), which is 
the term t33. Notice also how this connects with the reduction performed in the 
example above. 

The bijection between triangles with integer sides and partitions into 2's, 3's, and 4's 
with at least one 3, implicit in the generating function (1) and explicit in our mappings 
between triples a, b, c and u, v, w, has been observed before. In an exercise toward 
the end of [6] (see page 281), interested readers can discover how this bijection is 
related to free commutative monoids. 

Final remarks Although the formula (2") is elegant, we wanted to derive, 
directly from expression (1), an explicit formula for the number t,, that did not 
invoke the nearest integer or greatest integer functions. To find that formula, 
we turned to Maple to expand (1) into partial fractions. The command was 
convert (f, parfrac, x), where we had earlier defined f to be expression (1). 
The result was 
-1 1 13 1 1 1 1 1 1 x+2 1 x+1 

+ + _ . 1 
24 (x-1)3 288 x-1 16(X+1)2 32 x+1 9 X2+X+1 8 X2+1 
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For most of these terms, the coefficient of x n is clear from the general binomial 
theorem. Thus the first four terms give the following coefficient of xn: 

24 (n2)- -138-8- 76(n +1)(- 'l312() 

The last two terms, which involve irreducible quadratics, are trickier. They may be 
handled by noting that the roots are complex third and fourth roots of unity, 
respectively (this explains the modulo 12 format of our formula (2)). But Maple 
handles them by finding Taylor expansions. For the next to last term, the command 
taylor((x+2) /((xA2+x+1), x=0, 13) yields 

2 x-x 2+2x3-X4-X5 +2X6-X7-x8 + 2x9 -x10 -x11 + 2x12 + 0( x13). 

This shows that the coefficient of (x + 2)/( x2 + x + 1) is 2 if n is divisible by 3 and 
- 1 otherwise. The coefficients of (x + 1)/(x2 + 1) can be found with Maple, by use 
of complex roots, or by shifting the expansion of l/(x2 + 1). They turn out to be -1 
if n is 0 or 1 modulo 4, and + 1 otherwise. Combining all of this information, we 
arrived at the formula for t,, given in (2), above. 

For some interesting old problems on sharing full and partially full barrels, related 
to counting integer triangles, see pages 150 to 165 of Olivastro's book [4]. Singmaster's 
paper [5] is Olivastro's source; it also contains interesting connections between 
counting triangles and partitions of integers into three parts. For another explanation 
of the connection between partitions and the number of triangles, which is more in 
the spirit of our approach, see the nice exposition by Honsberger [2], which expands 
on [1]. For related applications of generating functions, see [7]. 
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Math Bite: On the Nowhere Differentiability 
of the Coordinate Functions of the Isdki Curve 

Kiyoshi Iseki modified Schoenberg's space-filling curve [1] to obtain a continuous 
curve that passes through every point of the No-dimensional unit cube [0, 1] x [0, 1] x 
[0, 1] x ... (see [2] and [3]). The coordinate functions of Iseki's curve are defined as 
follows: 

p t) = 2 pO (3t)k 0 < t < 1, n = 1, 2,3,..., 

where the 2-periodic function p is defined for t E [0, 1] by 

0o if te [0,1/3), 

p(t) = 3t - I if t E [1/3,2/3), 
t1 if te [2/3,1], 

and elsewhere by p(-t) = p(t) and p(t + 2) = p(t). 
To show that these coordinate functions are nowhere differentiable in (0, 1), let 

kq = [32"qt] (where [ ] denotes the greatest integer function), and consider the two 
sequences 

kq 1 
aq= 32q and bq = aq + 2"q 

The line of reasoning employed in our proof of the nowhere differentiability of the 
coordinate functions of the Schoenberg curve (see [4]) shows that 

(Pn(bq) - (p(aq) . P,l(bq) - p1(aq) 
lim sup F -a = oo or, lim inf b0- 0 limsup bq aq q q 

whence the desired result follows. To handle the endpoints, take 

aq =0O, bq = 32,,q at t = 0; a1 =1 - b1 = at t=1. 
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The Sufficient Condition for the Differentiability 
of Functions of Several Variables 

XU PINGYA 
Nanjing College of Electric Power 

Nanjing 210013 
People's Republic of China 

In courses on several variable calculus, the following observations about differentia- 
bility are made. Given a function f: R2 DR, it is only a necessary condition for 
differentiability at the point P that both partial derivatives exist at P. It has been 
observed in [1], [2], and [3] that if both partial derivatives exist and one of them is 
continuous at the point P, then f is differentiable at P. An example given in [3] shows 
that the corresponding assertion is not generally true for a function of n variables 
when n ? 3. Specifically, for n ? 3, the function need not be differentiable at the 
point even if all n partial derivatives exist and one of them is continuous at the point. 

We will prove the following theorem. 

THEOREM 1. Suppose that the functionrf: RD -> -R has the property that all n partial 
derivatives exist at the point P in Rn and n- 1 of the partial derivatives are 
continuous at P. Then f is diJjferentiable at P. 

After the proof we provide an example to show that the conclusion need not hold if 
two or more of the partial derivatives are discontinuous at P. 

Proof. Consider P = (x, ,..., x,7) and suppose that all the partial derivatives fi' exist 
at P and that all of them are continuous at P except possibly f,. Then 

liIm f(x1 
. 

* Xn-1, x7, + A x,1) -f( x, x ,-1, x7]) Af(P) 

and so 

f(xl..., Xn-1, Xn + Ax,1) -f(X1 , -,7n_1r Xn) =f.(p)AXn + 8nAX 

where lim,, . 0 e, = 0. By Lagrange's mean value theorem, 

f (x, ... , xi_1, xi + Axi, ... , xn + A+x Xx ) 

fA xI) ... ., Xi_1, xi) xi+I + AXxi+I) ... ., X7] + A X7]) 

f.7 ( XI) .. * ' Xi-I, ri (rxi+I + Axi+l r. *.., X7] + AXn)Axi, 

where (i is between xi and xi + LA x for i = 1, 2, . .., n - 1. 

Let p= (AXx)2 + *' +( Axn)2. Since f/' is continuous at P, we have 

lim (xI,.*, Xi- _ i, Xi + xi+1 ,...,x, + XI) =fi'( P), 
P -4O 
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so that 

fi ( XI, . ,Xi-1, (o ,Xi+I + A Xi+1- ,Xn +A lxn) =fJ () +-i , 

where limp 0ei = 0 for i = 1,2,...,n 1. Hence 

f(x1. * * Xi-1 xi + Axj *...*, Xn + lxn) 

-f(xI,.. *,xi-,, xi, xi+, + Axi+I).. Xn + AxXn) 

fi i-1, . . i, X_1 i i+I + AXi+I * Xn + AXn)AXi 

=fil(P)Axj + eiAxi, 

and therefore 

f(x1+ x1 , , xn + AXn) -f Xi, Xn) 

n 

E(f(X , Xi1, Xi + Ax *, Xn + AXxn) 
i=l 

-i xI, xi-I, Xi, xi+I + Axi+ , Xn + Axn)) 

n n n 

= E f(P)Axi+ EYgiAxi= Ef:(P)Axi+O(P)- 
i=1 i=1 i=1 

This shows that f is differentiable at P and completes the proof of the theorem. 

Now, for each n ? 2, we give an example showing that the theorem no longer 
remains true if more than one of the partials is allowed to be discontinuous. For 
n = 2, many readers will find the example familiar. Let 

xi X12 + x32 + * +x2, if x2+x20O 
f( x1 . ..,xfl)t= dx2 +X2 

t0, if X24+x2=O. 

At the origin, we have 

fi(O. ,0) = lim f(AAxO'. 0) =; 

for x2+x2 O0, 

lim f~= lim 
x1- >O, x2=kxl x ,X2=kxl (42+x) 3/2 (I +k2) 3/2 

for each k. Thus fi is discontinuous at the origin. Similarly, f2 is discontinuous at the 
origin. Straightforward calculations show that the remaining partial derivatives are 
continuous at the origin. When the point (A x,, Ax2 . Axn) tends to the origin 
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along the line X1 =X2 = =Xn we see that 

_ _(AX1)2 + (/\])2 i X2 

(A2 2= 

A (XX1)2 ( n-2)(xl)2 1 
+ - #0. 

s2n( Ax ) n d n( At Xt)2 o n 

This shows that function f is not differentiable at the origin. 
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Math Bite: Equality of Limits in Ratio and Root Tests 

Relations among various tests for convergence of series arose in the note [1] and its 
corrigendum. For the convergence of series El. Oa, with positive terms, two well- 
known tests are as follows: 

D'ALEMBERT'S RATIO TEST. Suppose that lim,o, a,+ =L. Then Ean converges if 
a,, 

L < 1 and diverges if L > 1. 

CAUCHY'S ROOT TEST. Suppose that lim . a,//n = M. Then Ean converges if M < 1 
and diverges if M > 1. 

We show-using the tests themselves-that if the limits L and M exist, they must 
be equal. To this end, suppose that L < M. (The argument for the case M < L is 
similar.) Choose a real number k such that L < k < M. 

Now consider the series Ebn, where b,1 = aj1/k n. Then we have 

bn+ L <I/n=M lim b k<1, but lim bn" > 1. 

The first limit implies that Ebn converges; the second, that Ebn diverges. This is a 
contradiction. 
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Turning Lights Out with Linear Algebra 

MARLOW ANDERSON 
Colorado College 

Colorado Springs, CO 80903 

TODD FEIL 
Denison University 

Granville, OH 43023 

The game Lights Out, commercially available from Tiger Electronics, consists of a 
5 x 5 array of 25 lighted buttons; each light may be on or off. A move consists of 
pushing a single button. Doing so changes the on/off state of the light on the button 
pushed, and of all its vertical and horizontal neighbors. Given an initial configuration 
of lights which are turned on, the object is to turn out all the lights. 

A complete strategy for the game can be obtained using linear algebra, requiring 
only knowledge of Gauss-Jordan elimination and some facts about the column and 
null spaces of a matrix. All calculations are done modulo 2. 

We make some initial observations. 

1. Pushing a button twice is equivalent to not pushing it at all. Hence, for any given 
configuration, we need consider only solutions in which each button is pushed 
no more than once. 

2. The state of a button depends only on how often (whether even or odd) it and its 
neighbors have been pushed. Hence, the order in which the buttons are pushed 
is immaterial. 

We will represent the state of each light by an element of Z2, the field of integers 
modulo 2; 1 for on, and 0 for off. We will denote the state of the light in the ith row 
and jth column by bi j, an element of Z2, and the entire array by a 25 x 1 column 
vector b, with entries ordered as follows: 

b = (bI,I, bI,2,- , bl,5, b2, 1, b55 5) 

(T stands for transpose). We will call such a vector a configuration of the array. 
Pressing a button changes the configuration vector by adding to b a vector that has 

l's at the location of the button and its neighbors and O's elsewhere. The order of 
pushing buttons makes no differences, so we may represent a strategy by another 
25 X I column vector x, where xi is 1 if the (i,j) button is to be pushed, and 0 
otherwise. 

If we start with all the lights out and configuration b is obtained by strategy x, then 

b 1 =XI1, +X1,2 +X2,1, 

b1,2 
= X1,I + X1,2 + X1,3 + X2,2, 

b1,3 = xI2 + X1,3 + X1,4 + X2,3- 
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More generally, it is straightforward to check that the result b of the strategy x is the 
matrix product Ax = b, where A is the 25 X 25 matrix: 

B I 1 0 0 
I B I 0 

A= 0 I B I 0 
0 0 I B I 
O O O I B) 

here I is the 5 x 5 identity matrix, 0 is the 5 X 5 matrix of all zeros, and B is the 
matrix 

I I 0 0 0 
1 1 1 0 0 

B= 0 1 1 1 0 
O 0 1 1 1 
O O 0 1 1 

Note that B is a symmetric matrix, and so A is symmetric too. 
Given an arbitrary configuration b, we will say that b is winnrable if there exists a 

strategy x to turn out all the lights in b. The key observation is as follows: 

If a set of buttons is pushed to create a configuration, then starting with 
that configuration and pressing the samne set of buttons will turn the lights 
out. 

That is, to find a strategy to turn out all the lights in b, we need to solve b = Ax. Thus, 
a configuration b is winnable if and only if it belongs to the column space of the 
matrix A; we denote the latter by Col( A). 

To analyze Col(A), we perform Gauss-Jordan elimination on A. This would be 
tedious to perform by hand, but is easier using any computer algebra system capable 
of handling matrices with entries from Z2; Maple or Mathematica will do the job. 
Gauss-Jordan will yield RA = E, where E is the Gauss-Jordan echelon form, and R is 
the product of the elementary matrices which perform the reducing row operations. 
The matrices R and E are rather formidable, and not particularly illuminating. We 
will not display them here but invite the reader to calculate them using a favorite 
computer algebra system. 

Having done this calculation, we see that the matrix E is of rank 23, with two free 
variables X5,4 and x5,5 in the last two columns. Indeed, the last two columns of E are 

(O, 1, 1, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,O, 1,O, 1,O, 1, 1,O,0) T 

and 

(1,0,1,0,1,1,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1, ,O)T 

Now A is a symmetric matrix, and so Col(A) equals the row space of A, denoted 
Row( A). But Row( A) is the orthogonal complement of the null space of A (denoted 
Null( A)), which in turn equals Null(E). So, to describe Col( A), we need only 
determine a basis for Null(E). 

Since E is in Gauss-Jordan echelon form, it is easy to find an orthogonal basis for 
Null(E) by examining the last two columns of E: 

__> = (nl 1, 1, 1, 0, 1, nl 1, nl 1, 1, 1, 0,1, n 1, 1, nl , nl, 1, 1, n T 
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and 

n2= (1,O,1,,1,1,0,1,O,1,O,0,O,O,O,1,O,1,O,1,1,O,10,O,1)T 

Putting this together, we have the following: 

THEOREM 1. A configuration b is winnable if and only if b is perpendicular to the 
two vectors nc arnd n2' 

Therefore, to see if a configuration is winnable, we simply compute the dot product 
of that configuration with n' and n2. For example, consider the configurations below 
(which we have shaped as 5 X 5 arrays): 

0 1 0 00 (1 0 0 1 0 

o 0 1 00 0 0 1 0 0 
f= 0 1 0 1 0 = 0 1 1 0 1. 

0 1 1 0 1 0 1 0 0 0 
I 0 0 0 0 I 0 0 0 0 

Then f is winnable, while g is not (g is not perpendicular to n2). 
Since the dimension of the null space is 2, and the scalar field is Z2, it follows from 

this theorem that of the 225 possible configurations, only one-fourth of them are 
winnable. Furthermore, if b is a winnable configuration with winning strategy x, then 
x+ n, x + `2 and x + n- + n2 are also winning strategies. 

Suppose now that b is a winnable configuration. We would like to find one of the 
four strategies x for which Ax'= b. But since we need only find one solution, we may 
as well set the two free variables x5,4 and x55 equal to zero. In this case x= 137 So, 
x= Ex5 = RAx = Rb. Explicitly, we have a winning strategy given by x = Rb. We thus 
have the following theorem: 

THEOREM 2. Suppose that b is a winnable configuration. Then the four winning 
strategies for b are 

Rb, Rb + ni, Rb + n2, Rb + n + n2' 

We observed above that the configuration f is winnable. To find a winning strategy, 
we compute Rf (where we reshape f as a column vector): 

Rf = (0,0, ,1, 0,0,0,0,0, 1,0,0,0,0, 1,0, 1,,0,0,0, O,,0,0,0)T. 

This theorem gives our solutions in closed, computable form. Admittedly, this 
computation is tedious to do by hand, preserving the game's appeal. We can do better 
than completing the entire computation, if we proceed algorithmically. For suppose 
we only compute the strategy for the first row (that is, the first five entries in the 
column Rb). We then carry out these moves; Theorem 2 says that no more moves in 
the first row are necessary. We then look to see if there are any lights on in the first 
row. The only way to turn these out, using moves in the last four rows, is to push the 
button immediately below each light which is on. Having now determined a strategy 
for the first two rows, we then move on to each successive row in the same way. 

Lights Out can be generalized to an n X n array of lights. One can proceed in a 
manner similar to the way we solved the 5 X 5 case. What is interesting is the 
dimension of the null space of the corresponding matrices for various values of n 
(we call these n2 x n2 matrices An); the table below summarizes the results. 
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Of course if the dimension of the null space is zero, every configuration is winnable 
and the solution unique (if no buttons are pressed more than once). We haven't spent 
any time trying to solve some of these larger puzzles, but they must be very difficult! 

Dimension Dimension 
n of Null(A,,) n of Null(A,,) 
2 0 12 0 
3 0 13 0 
4 4 14 4 
5 2 15 0 
6 0 16 8 
7 0 17 2 
8 0 18 0 
9 8 19 16 

10 0 20 0 
11 6 21 0 

A further natural generalization is to consider Lights Out on a torus; that is, lights 
on the top row are considered neighbors of lights on the bottom row, and likewise for 
the leftmost and rightmost columns. This "wrap around" changes the matrices A,I, of 
course. (We leave this as an exercise for the reader.) Here are some corresponding 
results for the game on tori of various sizes: 

Dimension Dimension 
n of Null(An) n of Null(A,,) 
2 0 12 16 
3 4 13 0 
4 0 14 0 
5 8 15 12 
6 8 16 0 
7 0 17 16 
8 0 18 8 
9 4 19 0 

10 16 20 32 
11 0 21 4 

Acknowledgment Our thanks to our colleague John Watkins for his suggestions on wiiting this paper. 
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Digitally Determined Periodic Points 

DAVID SPROWS 
Villanova University 

Villanova, PA 19085-1699 

Introduction One of the most remarkable and surprising results in iteration theory 
is the fact that a continuous function from a closed interval to itself that has a point of 
peiiod three must have points of period n for all natural numbers n. An excellent 
description and proof of this result is given in [2]. The presentation in [2] is especially 
suitable for students since it requires nothing more advanced than the intermediate 
value theorem, and uses as its main illustrative example the elementary piecewise 
linear function given by 

( x) (2-2X O K2 (1) 

It is not hard to establish the fact that this function has a point of period three since 
f(O) = 2, f(l) = 1 and f(l) = 0. It is less obvious that there are points of period n for 
all other n. Although [2] gives arguments to show that these points must exist, it does 
not give any specific examples of such points. In this brief note we will show how a 
reformulation of the definition of f in binary notation makes it possible to determine 
in a very straightforward manner periodic points of any period. 

Periodic points Given x in [0, 1], let x = a, a2a3 ... be the binaiy representation 
of x (for x = 1, let ak = 1 for all k). Note that if 0 < x < i then a, = 0. This means 
that the first half of the definition of f can be rewritten as 

f(.0a2a3.* - - )= J12 a3. ... 

If 1 <x < 1, then a = 1, so the second part of the definition of f becomes 
f(I1a2a3**.)=2-1.a234*** = 1-a2 3 4 a =.a' a'3 '4.. .,wherea', =1-ak 
for all k. 

Thus in binary notation, (1) can be expressed as follows: 

.1a2a3 ... if a1 = 0, 
f(.Aal2a3* ) - 

a a a. if 1 = 1. 

Note that, in general, (a')' = ak. This means that a number with binary representa- 
tion .10a3a4 ... will have the property that 

f2(.10a3a4 ...)= .a3a4 ... . (2) 

This fact will prove useful in the following. 
Our goal is to determine for each natural number n an example of a point x that 

satisfies the condition f1 "(x) = x and f k(x) 0 x for k < n. 
A consequence of (2) is that the point x = .101010 = .10 satisfies f2(x) = x, but 

a check shows that, in fact, this point has period 1, not period 2. To get a point of 
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period 2 we can start with a1 = 0 and note that 

fa(.oa2a3 . 
a 

-)= .a' (3) 

Thus f2(x)=x provided a'2 = 0, a' = a2a =a3.which gives x=.010101 
=.01 as a point of period 2. 

Combining (2) and (3) it is possible to find periodic points of any even order. For 
example, to get a point of period 4 we set a'2 = 1 and a' = 0 in (3). This gives 
f4(.001a4 a5...) =f2(.10a'4 a' ...) = .a4 af .... Thus x = .001a a5 ... satisfies f4(x) 
=x provided a'4=0, af5=0, a' =1.... This yields x =.001110, which a quick 
check shows does not satisfy f k( x) = x for k < 4, so x does have period 4. 

Continuing, we can start with x = .001a4a5 ... and set af = 1 and a' = 0. Solving 
f6(x) = x we get x = .0010111010 as a point of period 6. 

In general, this technique yields a point of period 2 + 2k of the form 

X=.Oa,. ..2klal ... a2k where a = 0 if j is odd and a. = 1 if j is even, 1 <j < 2k. 
The above approach can be adapted to find points of odd period. For example, 

if we set a2 = 0 in (3) we get 

) (00a 4 -- )=fi-13 4 *--)=*3 4*---(4 

Note that an immediate consequence of (4) is that zero is a point of period 3. To 
get a point of period 5, we set a3 = 1 and a4 = 0 and use (2) to obtain 
f5(.0010a5a6 ...) = a5a6 .... Thus x =.0010a5a6... satisfies f5(x) = x provided 
a5 =0 ,a6 =O, a7 = 1, .... This gives x = .0010. 

In general, th'is procedure yields a point of period 3 + 2k of the form 
x= .00al...a2k where aj = 1 if j is odd and aj=0 if j is even, 1 <j < 2k. 

This approach of using binary digits to determine periodic points can also be used 
for the "tent" function, i.e., the function from [0, 1] to itself given by 

12 X, 0 < X <2 
A x) = 2- , 2 2<x?1. 

For this function, the nth iterate of f can be expressed in binary notation by 

f a |n+lan?+a2 ... if an = 0, 

\ n+l n+2 *** it Z 1 

Thus any number that can be represented in base two in the form .a ... an, where 
a,, = 0, is periodic. (The period may be less than n; e.g., .10 has period 1.) 

In addition to exhibiting periodic points, these binaiy representations can be used 
to illustrate such properties as sensitivity to initial conditions. One of the main 
advantages of this digital approach is that it is suitable not only as the basis for a more 
extensive discussion of iteration theory, but also as a stand-alone glimpse of some of 
the rich dynamics exhibited by some very elementary functions. 
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When is a Limit Function Continuous? 

RUSSELL A. GORDON 
Whitman College 

Walla Walla, WA 99362 

Introduction Let {fk} be a sequence of functions that converges pointwise on an 
inteival I to a function f and suppose that each of the functions fk is continuous at a 
point c E I. Must the limit function f be continuous at c? It is not difficult to find 
examples to show that the answer is no. Something more than pointwise convergence 
is required to guarantee that the limit function inherits the property of continuity. The 
simplest sufficient condition is uniform convergence, but this requirement is actually 
much stronger than necessary. The purpose of this note is to find the minimum 
requirement to add to pointwise convergence that will guarantee continuity of the 
limit function. 

Examples To say that {fk} converges pointwise to f on I means that the sequence 
{fk(x)} converges to f(x) for each x E I. Consider the following explicit examples, all 
on the interval [0, 1]: 

l. fk(x)=x/k; f(x)=0. 
2. fk( x) = sin (kFrx)/k; f(x) = 0. 

4. fk(x)x=kk; <10<x<lk fx fx=o 
ti (llx if llk < x < l, 1 /X if O < x < 1. 

fk f t ~~~1 if x-l 1 

{kx ifl/k<x<l/k, 
5. fk(x)= 2-kx if llk < x < 2/k, f( X) = O. 

0O if 2/k < x < 2; 

We leave it to the reader to verify that each sequence {fk} converges pointwise on 
[0, 1] to the corresponding f. (Sketching a few graphs of the fk's gives a graphical 
sense of the convergence in each case.) All of the functions fk are continuous on 
[0, 1], but the limit function in Example 3 is not continuous at 0, and the limit function 
in Example 4 is not continuous at 1. 

In Example 4, the limit function f is continuous at each point of [0, 1); it fails to be 
continuous only at a single point. However, once it is known that "bad" behavior 
appears at one point, it is possible to extend the effect. Consider, for instance, the 
sequence fk(x) = cos2k(47Tx) on the interval [0, 1]. Basic properties of the cosine 
function imply that the limit function f is identically zero on [0, 1] except on the set 
{0, 1/4,1/2,3/4, 1), where f(x) = 1. Thus the pointwise limit function has five 
points of discontinuity, even though each fk is continuous on [0, 1]. Similarly, if 
fk( x) = cos2k(1000!lTX), then the limit function will have discontinuities at each point 
x E [0, 1] with the property that 1000! x is an integer-and there are quite a few such 
points. In fact, the situation can be made even worse. The limit function in the last 
example has many-but only finitely many-points of discontinuity. Using techniques 
beyond the scope of this note (some ideas from measure theory), one can show that 
the pointwise limit of a sequence of continuous functions can have infinitely many, 
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even uncountably many, discontinuities. On the other hand, it is known that the 
pointwise limit of a sequence of continuous functions (such a function is said to be of 
Baire class one) must have some points of continuity. For an elementary discussion of 
this result, see [1]. 

Uniform convergence Suppose that {fk} converges pointwise to f on I. For x E I 
and e > 0, there exists a positive integer K(e, x) such that Ifk(x) -f(x)l < e for all 
k ? K(e, x). For a fixed but arbitrary e> 0, the integer K(e, x) will, in general, 
depend on x. If, for each fixed e > 0, the integer K(e, x) can be chosen indepen- 
dently of x on an interval I, then the convergence is uniform. More precisely, the 
sequence {fk} converges uniformly to f on I if for each e > 0 there exists a positive 
integer K such that Ifk(x) -f(x)l < e for all x E I and for all k ? K. 

The sequences in Examples 1 and 2 converge uniformly on [0, 1]; those in Examples 
3, 4, and 5 do not. (Proving these statements is good practice with the definition.) The 
following theorem and proof are well known; we include them for comparison to 
Theorem 2. 

THEOREM 1. Suppose that {fk} converges pointwise to a functionf on an interval I, 
let c E I, and assume that each fk is continuous at c. If {fki} converges uniformly to f 
on I, then f is continuous at c. 

Proof. Let e > 0. Since {fk} converges uniformly to f on I, there exists a positive 
integer p such that Ifp(x) -f(x)l < e/3 for all x E I. Since fp is continuous at c, 
there exists 8 > 0 such that Ifp(x) -fp(c)l < e/3 for all x E I that satisfy Ix - cl < 8. 
For these same values of x, 

f( x) -f(c) I < If( x) -fp( x) I + IMP x) -fp(c) I + lfp(c) -f(c) I 
< e/3 + e/3 + e/3 = e. 

Hence, the function f is continuous at c. 

Quasi-uniform convergence Example 5 illustrates that the limit function may be 
continuous even when the convergence is not uniform. It is easy to verify that this 
sequence converges uniformly on the interval [a, 1] for each a > 0; the difficulty lies 
at 0. Although 0 is the only "problem point," this non-uniform effect can be extended 
to an infinite number of points as mentioned earlier. In other words, the limit function 
can be continuous even when the convergence is far from uniform. Even without an 
example, we can see from the preceding proof that the assumption of uniform 
convergence is overkill by looking closely at the key inequality 

If( x) -f(c) I < If(x) -fp (x) I + I fp x) -fp (c) I + Ifp (c) -f(c)I 
The last term can be made small by the pointwise convergence at c. The middle term 
can be made small for x near c by the continuity of fp at c. The first term also needs 
to be small for all x near c-here is where something stronger than pointwise 
convergence is required. However, we do not need If(x) -fk((x)l < e for all k ? K 
and for all x E I. We need only that If(x) -fk(x)I < e when k = p and for all x E I 
that are near c. These considerations lead to the following definition: 

DEFINITION. Let {fk} be a sequence offunctions defined on an interval I, such that 
{fk} converges pointwise to a function f defined on I. The sequence {fk} converges 
quasi-unifornly to f at the point c E I if for each e > 0 and positive integer K there 
exist 8 > 0 and a positive integer m ? K such that If,,,(x) -f(x)I < e for all x E I that 
satisfy Ix-cI<8. 
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It is not difficult to show that the sequence in Example 5 converges quasi-uniformly 
at 0. The foregoing discussion shows that quasi-uniform convergence is sufficient to 
guarantee that the limit function is continuous; in fact, quasi-uniform convergence is 
necessary as well. 

THEOREM 2. Suppose that {fk} converges pointwise to afunctionf on an interval I, 
let c E I, and assume that each fk is continuous at c. Then {fk} converges quasi-uni- 
formly to f at c if and only iff is continuous at c. 

Proof. Suppose first that {fk} converges quasi-uniformly to f at c and let e > 0. 
Choose a positive integer K such that Ifk(c) -f(c)I < e/3 for all k ? K. Since {fk} 

converges quasi-uniformly to f at c, there exist 8 > 0 and a positive integer in ? K 
such that If,j(x) -f(x)l < e/3 for all x ( I that satisfy Ix - cl < 8. Since fm, is 
continuous at c, there exists a positive number 8, < 8 such that If,,(x) -fm(c)l < e/3 
for all x E I that satisfy I x - cl < 81. For these same values of x, 

f(x) -f(c) I < f( x) -f( x) I + f f( x) -f,11(c) I + IfM(c) -f(c) 
< e/3 + e/3 + e/3 = e. 

Hence, the function f is continuous at c. 
Now suppose that f is continuous at c. Let e > 0 and let K be a positive integer. 

Since {fk(c)} converges to f(c), there exists an integer m ? K such that Ifj1(c) -f(c)I 
< e/3. Since both fm and f are continuous at c, there exists 8 > 0 such that for all 
x E I that satisfy I , - c < 8, 

fj( x) -f(c) I < e/3 and If( x) -f(c) I < e/3. 

It follows that 

fJ (X) f( x) I < If_n( x) -fn(c) I + If1n(c) -f(c) ? + If(C) -f( x) 
< e/3 + e/3 + e/3 = e 

for all x E I that satisfy I x - cl < 8. Hence, the sequence {fk} converges quasi-uni- 
formly to f at c. 

Note An interesting discussion of the history of this idea can be found in [2]. 
Chapter 2 of [3] also considers several ideas related to the convergence properties of 
sequences of continuous functions. 
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Cusps on Wheels on Wheels on Wheels 

PETER GIBLIN 
University of Liverpool 

Liverpool L69 3BX 
England 

MATTHEW TROUT 
Cross Hall High School 

Ormskirk, Lancashire 
England 

We were intrigued by the article by Frank Farris [1] in this MAGAZINE, showing how 
to connect curves produced by a trio of rotating wheels with Fourier series. We drew 
some of Farris's curves and observed that some had cusps, and in this note we 
investigate the conditions that make this happen. 

Consider the family of curves 

f(t) = et + -eqit + -(1) 

where d1, d2 are real, and q, r are positive integers this makes the curve close up at 
t = 2-r. We ask: For which q, r, dl, d2, does the curve given by (1) have cusps and, 
when it does, how many are there? We begin by changing variables and turning the 
question into one about intersecting circles in the plane. 

Differentiating (1) with respect to t and equating this to zero gives the condition for 
the curve parametrized by f to have singularities, which will usually be cusps. After 
cancelling through by e't, we arrive at an equation of the form 

1 + aei7llt = bei( U-nt) (2) 

where new variables a, in, b, n are related to those above by 

di = a q =im + 1, d2 = b I r=rn -1, 

so that m is an integer ? 0 and n is an integer ? 2. We shall now concentrate on0(2), 
in which we take a, b real and > 0. 

Of course (2) just expresses the fact that two circles, one radius b centered at 
the origin and the other radius a centered at the complex point 1, intersect, as in 
FIGURE 1(i). Note that, since a, b determine this figure, it is clear that the marked 
angles may not have the form int and n - at for the same t and integers m and n. So 2 
we need to ask for values of a, b which do allow integer values to be chosen for in 
and n, and, for such a, b we want to find the number of possible t, each giving a cusp 
on the curve parametrized by f. It is also possible that for the same t both 
intersections of the circles allow integral values of m and n, in which case we can 
expect the cusps arising from each of the intersection points to combine on the same 
curve. 
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(i) (ii)~~~~(ii 

W ; 

FIGURE 1 
(i) The general setup for finding cusps from intersections of two circles; 

(ii) and (iii) two special cases where m, n can be chosen integral. 

Here is an example where m and n can be chosen to be integral. In FIGURE 1(i) the 

circles are of unit radius (a = b = 1) and they intersect at the points 2 ) 2 so 

that, for integers k, 1, k', 1', we have, for the upper and lower intersection respectively, 

mtt= 3 + 2klT, nt= +217T, resp. it= - + 2k'7, nt= 6 +211,. (3) 3 63 es.i 6 2' t=+l 

Hence 

m 4+12k 8+12k' 
n 1+ 121; or 5+ 121' (4) 

Suppose we select any integers k,l and then choose integers mn, n with m/n given 
by the first of the above ratios. The curve (1) given by these m, n and a = 1, b = 1 
will then have cusps corresponding to the upper intersection of the two circles. How 
many cusps? To answer this we want to know, for these fixed values of m and n, how 
many values of t between 0 and 21T satisfy the first two equations of (3) for some k,l. 
This number is easily checked to be the greatest common divisor (m, n). 

We can also select any integers k', 1' and then choose m and n with m/n equal to 
the second of the ratios in (4). The resulting curve (1), with a = b = 1, will have 
(m, n) cusps corresponding to the lower of the two intersections of the circles. In this 
example, it happens that choosing k,l is actually the same as choosing k',l': in fact 
taking k' = -3 - 7k, 1' = - 1 - 71 takes the second fraction to the first, showing that 
any m, n which create cusps from the upper intersection automatically create cusps 
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a=1, b= 1, mn=4, n=13 a= 1, b= 1, mn = 8, n =5 

FIGURE 2 
Two examples with a = b = 1. 

from the lower intersection. The result is always a bilaterally symmetric curve with 
2(m, n) cusps. For example, taking m = 4, n = 13 or m = 8,n = 5 gives the curves in 
FIGURE 2. 

Incidentally, it is easy to check that, if m is even and n is odd, then f(r - t) = 
-f(t), resulting in bilateral symmetry about the y-axis. Similarly, if m and n are 
both even, then f(T + t) = -f(t), resulting in rotational symmetry with angle IT 
about the origin. 

Here is an example where m, n can be chosen integral, but the two intersection 
points of the circles do not necessarily correspond to the same choice of m and n. 
Consider FIGURE i(iii), where we have a = 2, b = 3 and 

mt = 
2 + 2kwr, nt = 21T 

for the upper intersection, and 

41T 
mt = 

4 
+ 2k'IT, nt = iT + 21'iT 

for the lower intersection. As before, k,l,k',l' are integers. Then 

m 1+3k 4+6k' 
n 31 or 3 + 61' 

In this case it is not true that the m,n arising from a choice of k, l always match those 
arising from a choice of k', 1'. In fact starting with k, l we can find k', 1' giving the 
same ratio m/n if and only if the following holds. We must have k odd; let 
s = 2(I + 3k). Then the largest power of 2 in s must be no less than the largest power 
of 2 in 1. For example, if k = 5 then s = 8 so the power of 2 in 1 must not exceed 3. 
So taking k = 5,1 = 8, =2 = 2 will give a bilaterally symmetrical curve with 
2(m, n) cusps. See FIGURE 3(left) for the case m = 2, n = 3. On the other hand taking 

m _ 16 __ W k = 5,1 = 16, n - - we get a curve with rotational symmetry and (m, n) cusps. 
See FIGURE 3(right) for the case m = 2, n = 6. 

Question What exactly distinguishes the two cases just considered? How can we 
predict whether both intersection points of the circle will be "used," thereby creating 
2(m, n) cusps? 
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a=2,b=1.732, 7in=2, n=3 a=2,b= 1.732, m=2, 7=6 

FIGURE 3 
Two examples with a = 2, b = /3. 

Another approach is to choose integers in and n in advance and find all compatible 
values of a and b. We simply equate coordinates at an intersection of the circles, and 
solve for a, b. Writing u = rnt, v = nt we obtain 

cos v sinu 
- cos(u + v) cos(u + v) 

Thus given in, n, we obtain all possible values of a, b giving cusps by choosing u, v 
with tu/v = rn/n and finding a, b from the formulae. 

For example, let us choose in = 2, n = 4, so that v = 2u, and we get 

cos2u sinu 
a= , b =-. a cos3u; cos3ut 

Suppose for example that a = 3. We can find all possible u using a numerical 
equation solver and substitute to find the corresponding b. In fact the latter come to 
approximately 

?2.15, +3.06, +3.88. 
Note that one value is very close to b = 3; however it is not hard to show that when 
n = 2, n = 4 we cannot have a = b and still have cusps. 

b=2.15 b=2.5 

b =3.06 b =3.5 b=3.88 

FIGURE 4 
Various curves with a = 3, in = 2, n = 4; the first, third anid fifth have two cusps. 
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FIGURE 4 shows the curves corresponding to various values of b which include the 
three positive ones giving cusps. Thus we can see how the cusps evolve from smooth 
curves in the family. 

REFERENCES 

1. F. A. Farris, Wheels on wheels on wheels-surprising symmetry, this MAGAZINE 69 (1996), 185-189. 

The Telescoping Series in Perspective 
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The telescoping series 
00 

kE- k(k+1) 
gets its name because the sum of the first n terms collapses: 

n n 
__ 

k=i k(k + 1) k=1 

We conclude, letting n -* oo, that the series converges to 1. The telescoping series is 
more than just an algebraic curiosity! In fact, we see examples of it almost every day. 
One is shown in FIGURE 1. 

FIGURE 1 shows that the apparent horizontal separations a, of the telephone poles 
satisfy (assuming infinitely many poles) En = 1an = S. This series turns out, in fact, to 

S~~~~~~~~~~E 

FIGURE1 
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FIGURE 4 shows the curves corresponding to various values of b which include the 
three positive ones giving cusps. Thus we can see how the cusps evolve from smooth 
curves in the family. 

REFERENCES 

1. F. A. Farris, Wheels on wheels on wheels-surprising symmetry, this MAGAZINE 69 (1996), 185-189. 
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be a version of the telescoping series. For simplicity, we'll consider the special case 
shown in FIGURE 2. The idea behind a perspective drawing (FIGURE 2) is that a viewer, 
seen from above, stands in front of a "picture plane" that in this case is perpendicular 
to the ground and contains the x-axis. The viewer uses only one eye, and thus is 
idealized as a single point. As light rays travel in straight lines from objects in the real 
world to the viewer's eye, they pierce the picture plane, leaving behind appropriately 
colored dots that, taken together, depict the scene. 

For convenience, we take as our unit of measure the (uniform) separation between 
the telephone poles, and we locate the picture plane and the viewer as shown in 
FIGURE 2. For n 2 1, the use of similar triangles shows that the x-coordinate xn of the 
image of the nth pole satisfies 

xn 1-xn n 
=* x = 

n 1 n+ 

Thus, for n > 1, the nth gap between xn-, and x. has width an, where 
1 

an =x n - 
= 

n(n + 

Moreover, comparing FIGURE 2 to FicuRE 1 shows that S = 1: the row of telephone 
poles appears to vanish precisely when the viewer looks straight ahead. 

Proof Without Words: The Area of a Right Triangle 

The area of a right triangle is 8 (hypotenuse)2 if and only if one acute angle is 1f 

*! F \o ''' s - 's . c/4 

c/4 

,Cv :I; 4 

./4 

c/4 

-KLARA PINTER 
H - 6729 SZEGED 

SzicoNYU. 41 
HUNGARY 
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PROB LEMS 

GEORGE T. GILBERT, Editor 
Texas Christian University 

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors 
Texas Christian University 

Proposals 
To be considered for publication, solutions 
should be received by March 1, 1999. 

1554. Proposed by Howard Cary Morris, Germantown, Tennessee. 

For 0 < r < 1, find the volume Vn(r) of 
( ~~~~~~n 
(xI ... xI)j E [0, 1]n: 7Xi < r 

1555. Proposed by Mihadly Bencze, Braqov, Romania. 

Given a, b, and Ck, k = 1,2,..., n, all greater than 1, find all real solutions x of 
n n 

E (x + a)101ack = E (X + b)logbck, 
k=1 k=1 

1556. Proposed by Gregory Galperin and Hillel Gauchrnan, Eastern Illinois Univer- 
sity, Charleston, Illinois. 

Let a,, .. , a1 be positive numbers with aa2 ... a = 1. Set xi = (En. 1ak)- ai for 
each i = 1, . n. Prove that 

T1 
il1 +x ?i<1. 

We invite readers to submit problems believed to be new and appealing to students and teachers of 
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any 
bibliographical information that wvill assist the editors and referees. A problem submitted as a Quickie 
should have an unexpected, succinct soluttion. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 
separate sheet containing the solver's name and full address. 

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor, Department of 
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically 
(ideally as a LATEX file) to g. gi lbert@tcu. edu. Readers who use e-mnail should also provide an 
e-mail address. 
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1557. Proposed by Peter Y. Woo, Biola University, La Mirada, California. 

Let PQ be a diameter of a circle, with A and B two distinct points on the circle on 
the same side of PQ. Let C be the intersection of the tangents to the circle at A and 
B. Let the tangent to the circle at Q meet PA, PB, and PC at A', B', and C', 
respectively. Prove that C' is the midpoint of A'B'. 

p 

Q A' C' B' 

1558. Proposed by Mansur Boase, student, St. Patul's School, London, England. 

Let the sequence (K,,)k ?1 be defined by K1 =2, K2 =8, and Kn+2 = 3KI -+I 
K,1 + 5(- 1)71. Prove that if K,1 is prime, then n must be a power of 3. 

Quickies 
Answers to the Quickies are on page 322. 

Q883. Proposed by Mutrray S. Klamkin, University of Alberta, Edmonton, Alberta, 
Canada. 

Given n rays in R' forming a non-degenerate n-hedral angle with vertex 0 and a 
point P in the interior of this angle, find points on the rays minimizing the volume of 
the simplex formed by the points and 0 under the restriction that P is in the 
hyperplane formed by the points. 

(This generalizes Q847 from the April 1996 issue of this MAGAZINE.) 

Q884. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, New York. 

Find the number of ordered rooted trees with n edges that have exactly one node 
with more than one child. 

(A tree is rooted if each edge is directed away from a designated node or "root." 
The direction is considered to be from "parent" to "child," It is ordered if the 
children of each node form a sequence rather than a set.) 

Solutions 
An Integral Sum of Cube Roots October 1997 

1529. Proposed by David C. Kay, University of North Carolina at Asheville, Asheville, 
North Carolina. 

For what positive numbers a is 
3 3 

2a+na+ ie2- 
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Solution by Dennis Reigle, Beth Stockslager, and Karen Blount, students, Shippens- 
burg University, Shippensburg, Pennsylvania. 

The expression is an integer for a = 100/27 and a = 5. 
We prove a generalization of the stated problem. For fixed k ? 0 and a > 0, define 

3 3 3 -- 3 

z=z(a):= k+ 
- 

+ k 3 

Observe that a > 0 implies that z(a) > 0 and |/ + k I > -k |. Thus 

z'(a) = 1 1 2/3) <0 

for all a > 0, a 0 k2. Since z(0) = 2FW and z(a) is continuous, it follows that the 

integer values of z are precisely the integers in the interval (0, 2F]. To find the 
value of a that produces the integer z, we solve for a in terms of z, 

_ ( z3 + k)2(8k - z3) 
27z3 

For k = 2, the only possibilities are z = 1 when a = 5 and z = 2 when a = 100/27. 
Also solved by Fasakin Dlumuyiwa Adeyemni, Reza Akhlaghi, Anchorage Math Solutions Group, Michael 

H. Andreoli, Angelo State Problem Group, Marcia Ascher, Herb Bailey, Matt Baker (graduate student), 
Roy Barbara (Lebanon), Brian D. Beasley, Rebecca Berg, J. C. Binz (Switzerland), Jean Bogaert 
(Belgium), Stan Byrd, Maureen T. Carroll, Sabint Cautis (Canada), Robin Chapman (United Kingdom), 
John Christopher, Charles K. Cook, Daniel J. Curtin, Ann Davis (student), Dan Davis, Thomas Dence, 
Daniele Donini (Italy), Robert L. Doucette, Roger B. Eggleton, Milton P. Eisner, Russell Euler and Jawad 
Sadek, Habibollah Y. Far, Tim Flood, Arthur H. Foss, Matt Foss, Lorraine L. Foster, Marty Getz and 
Dixon Jones, John F. Goehl, Jr., Natalio H. Guersenzvaig (Argentina), Bradley Gunsalus (student) and 
Paul Deiermann, Lee 0. Hagglund, D. Kipp Johnson, Geoffrey A. Kandall, Hans Kappus (Switzerland), 
James Kiefer, Kee-Wai Lau (China), Nortnan F. Lindquist, Nick Lord (England), George B. Marketos, 
Jack McCown, Edwin P. McCrary, Mark McKinzie, loana Mihaila, Can A. Minh (graduate student), Atar 
Sen Mittal, Lutcas Monzon, Alan Murra (student), William A. Newcomb, Stephen Noltie, Thomas J. Osler 
and James Chappell (student), Yi-chuan Pan, P. J. Pedler (Australia), R. Glenn Powers, Neville Robbins, 
Kenneth Rogers, Daniel M. Rosenblum, Shiva K. Saksena, Zeke Sarfa, Volkhard Schindler (Germany), 
Harry Sedinger, Heinz-Jiirgen Seiffert (Germany), Michael Semenoff, Nicholas C. Singer, Jason Skinner, 
W. R. Smythe, Anthony Sofo (Australia), Stephen Stviniarski, Richard L. Syverson, TAMUK Problem 
Solvers, R. W. W. Taylor, R. S. Tiberio, University of Central Florida Problems Group, Jack V. Wales, Jr., 
Charles H. Webster, WVestern Maryland College Problems Group, Nathan Wetzel, Joseph Wiener, Michael 
Woltermnann, Kenneth L. Yocomn, Monte J. Zerger, and the proposer. There were eleven incorrect solutions 
and ttwo incomplete solutions. 

Tower of Bubbles October 1997 

1530. Proposed by Allen J. Schwenk, Western Michigan University, Kalamazoo, 
Michigan. 

n = 4 
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A spherical bubble of radius 1 is surmounted by a smaller, hemispherical bubble, 
which in turn is surmounted by a still smaller hemispherical bubble, and so forth, until 
n chambers including the initial sphere are formed. What is the maximum height of 
any bubble tower with n chambers? 

I. Solution by Stephen Noltie, Ohio University, Lancaster, Ohio. 
The maximum height of any bubble tower with n chambers is 1 + Fn 
We compute the maximum height assuming all bubbles, including the bottom one, 

are hemispherical. We can then add 1 at the end to answer the original question. 
More generally, let h(r, n) be the maximum height of a stack of n hemispherical 
bubbles with bottom hemisphere of radius r. Clearly, h(r, n) = r h(l, n) since r is 
just a "scale factor." We prove that h(i, n) = vn by induction, beginning with the 
obvious h(1, 1) = 1. Now assume that h(1, n) = xnW. Then the maximal height of a 
tower with n + 1 chambers, whose second-from-bottom hemisphere has radius r, is 
f(r)= 1-r2 + h(r, n) = i1 - r2 + rFn. Maximizing f(r) for O < r < 1 yields a 
maximum value of 

This completes the induction. Furthermore, we see that the radii of the bubbles 
for the maximal tower of n bubbles are 1, (n - 1)/n, (n - 2)/n, 
J(n-3)/n, . . .1, l/n . 

II. Solution by Nick Lord, Tonbridge School, Kent, England. 
The height of a tower with hemispherical chambers of radii 1 > rl > r2 > * > rn- 

is 

h=1+ 1 r r 2 r=2 -r1 + +rn-+ 

Now apply the Cauchy-Schwarz inequality to 

( 1, 1...,1) and ( r, Vr - r . r22r2 ,r_1) in R1 

to see that h < 1 + F with equality if and only if 

=l_r 
2 2 _ __ 2 2 1r = /rl_-r2 = rn- 2 -rl2 =1 =n - I 

which gives ri = /(n-ti) /n for 1 < i < n-1. 

III. Solution by Michael Vowe, Therwil, Switzerland. 
Denote the radii by rl = 1, r2, r3, . rn. Then we obtain for the height of the 

bubble tower with n chambers 

h=r + /r 2-r2 + + - r- 1-r2 2 + r. 

Then by the concavity of the square root function (Jensen's inequality), 

h Ir rl-r2+r2-r32+ +2l -r+r2 
Itrln n 

with equality if and only if 
2 2= 2 _ 2 2 2= rJ2 ro r2 r2 -r3 = ri r 

or r1= (-+ )n 
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Also solved by Herb Bailey, Matt Baker (graduate student), Roy Barbara (Lebanon), J. C. Binz 

(Switzerland), Jean Bogaert (Belgium), Gerald D. Brown, Sabin Cautis (Canada), Robin Chapman 
(United Kingdom), Haiwen Chu (high school student), Dan Davis, Paul Deiermann, Daniele Donini 
(Italy), Robert L. Doucette, John D. Eggers, Roger B. Eggleton, Russell Euler and Jawad Sadek, Tom 
Gettys, Marty Getz and Dixon Jones, John F. Goehl, Jr., David C. Kay, James Kiefer, Emil F. Knapp, 
Neela Lakshmanan, Kee-Wai Lau (China), Can A. Minh (graduate student), Thomas J. Osler, Robert 
Patenaude, P. J. Pedler (Australia), Gao Peng (graduate student), Volkhard Schindler (Germany), 
Edward Schmeichel, Harry Sedinger, Chris Sliger and Gerald Thompson, W. R. Smythe, TAMUK Problem 
Solvers, Andrew Wade (Canada), Jack V. Wales, Jr., Western Maryland College Problems Group, Yongzhi 
Yang, and the proposer. There were twelve incorrect solutions and one incomplete solution. The main error 
was to assume the radii form a geometric progression. 

Distances Moved Under a Permutation October 1997 

1531. Proposed by Claus Mazanti Sorensen, student, Aarhus University, Aarhus, 
Denmark. 

For which positive integers n does there exist a permutation o- in the symmetric 
group S,, such that the map k -I I (k) - k 1, k E {1, 2, .. ., n}, is injective? 

Solution by Gao Peng, physics graduate student, University of Oklahoma, Norman, 
Oklahoma. 

There exists such a permutation if and only if n is of the form 4m or 4m + 1 for 
some integer m. 

First observe that, for any permutation u-, 

n n 
o- ((k) - k | -,(o-(k) - k) = O (mod2) . 

k=i k=i 

Next observe that the required o- must be a bijection between {1, 2,...n} and 
{0,1, n n-1}. We then have 

E o-(k)- k= E k= - 2) 
k=i k=O 

For n of the form 4m + 2 or 4m + 3, this sum is odd, so no such o- exists. 
For n = 4m, define u- by 

4m+ 1 -k if l <k <r or2m+ 1 <k <3m- 1, 
{4m-k if m+? <k<2m-1, 

ou(k) = 14 +2-k if 3m+ 1 <k <4m, 
I if k=2m, 
3m if k = 3m. 

For n = 4m + 1, define u- by 

4m+2-k ifl <k <m or2m+2 <k <3m, 
4m + 1 - k if m + 1 < k < 2m, 

ou(k) = 4m+3-k if 3m+2 <k <4m+ 1, 
I 1 if k=2m+1, 
3m+1 if k=3m+1. 

It is routine to verify that o- E S, and that k 3 I r(k) - k I is injective in both cases. To 
better see what is going on, we write o- in cycle notation for n = 12 and n = 13: 
(1, 12,2,11,3,10,4,8,5,7,6)(9) and (1, 13,2,12,3,11,4,9,5,8,6,7)(10). 
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Comment. D. J. Rogers and Robin Chapman, as well as Achilleas Sinefakopoulos, 
note that the problem was proposed by M. J. Pelling as E3269 in the American 
Mathematical Monthly, whose statement and solution appeared in the June-July 1988 
and November 1989 issues, respectively. 

Also solved by Roy Barbara (Lebanon), Jean Bogaert (Belgiumi), Robin Chapman (United Kingdom), 
Daniele Donini (Italy), Roger B. Eggleton, Marty Getz and Dixon Jones, W. R. Smythe, University of 
Central Florida Problenms Group, Michael Woltermann, and the proposer. 

Concurrency of an Altitude and Two Cevians October 1997 

1532. Proposed by Herbert Giilicher, Westfdlische Wilhelms-Universitat, Miinster, 
Germany. 

Let AABC, AACP and ABCQ be non-overlapping triangles in the plane with 
Z CAP and Z CBQ right angles. Let M be the foot of the perpendicular from C to 
AB. Prove that lines AQ, BP, and CM are concurrent if and only if Z BCQ = Z ACP. 

Pi. 

A M B 

The problem statement should have included the condition that neither Z ABC nor 
Z BAC is a right angle. 

I. Solution by Hans Kappus, Rodersdorf, Switzerland. 
Orient AABC in the complex plane so that A = a, B = b, and C = ic with 

a, b, c E R and a < b. Let a:= L ACP and ,3= L BCQ. Then 

P=a +i(ic -a)tan a=a -ctan a -iatan a. 

The line through B and P is given by the parametric equation 

z=(1-A)b+A(a-ctan a-iatana), Ae DR. 

Its point of intersection with the line CM, the imaginary axis, is found by setting 
Re z = 0 and turns out to be 

iab tan a 
Z]= a-b-ctana' 

Similarly, we see that AQ intersects CM at 

iab tan /3 
Z2=a - b - c tan,/3 

When neither Z ABC nor Z BAC is a right angle ab # 0. It now follows that zl = Z2 
if and only if tan a = tan ,B, or a = /3. 

II. Solution by Achilleas Sinefakopoulos, student, University of Athens, Athens, 
Greece. 

Because neither Z ABC nor Z BAC is a right angle, A does not lie on line BP and 
B does not lie on line AQ. Furthermore the perpendiculars from A to BP and from 
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B to AQ intersect the line CM, say at points R and S respectively. Then AACR and 
APAB are similar, since Z PBA = Z ARC and Z ACR = Z CAB + Z CMA = Z PAB. 
Thus, AC/AP = CR/AB. The same reasoning yields BC/BQ = CS/AB. 

Now notice that Z BCQ = Z ACP if and only if BC/BQ = AC/AP if and only if 
R and S coincide. If R and S coincide, then AQ, BP, and CM meet at the 
orthocenter of AABR. Conversely, if AQ, BP, and CM intersect at K, then K must 
be the orthocenter of AABR. Hence AK is perpendicular to BR. But AK is also 
perpendicular to BS. Accordingly, R and S must coincide. 

Also solved by Reza Akhlaghi, Herb Bailey, Roy Barbara (Lebanon), Francisco Bellot Rosado (Spain), 
J. C. Binz (Switzerland), Robert X. Brennan, Gerald D. Brown, Sabin Cautis (Canada), Robin Chapman 
(United Kingdom), Miguel Amengual Covas (Spain), Daniele Donini (Italy), David Doster, Robert L. 
Doucette, Ragnar Dybvik (Norway), Milton P. Eisner, Lorraine L. Foster, Marty Getz and Dixon Jones, 
D. Kipp Johnson, James Kiefer, Neela Lakshrnanan, Nick Lord (England), Robert Patenaude, Gao Peng 
(graduate student), Volkhard Schindler (Germany), Harry Sedinger, Michael Vowe (Switzerland), Michael 
Woltermnann, Bilal Yurdakul (student, Turkey), and the proposer. 

A Quadratic Recurrence Relation October 1997 

1533. Proposed by Joaquin Go'mez Rey, I. B. "Luis Buniuel," Alcorco'n, Madrid, 
Spain. 

Solve the recurrence relation an+1 = Ek = 0 )akan-k in terms of ao. 

I. Solution by most solvers. 
We show that a?l = n!a8n+' by induction. The claim is clear for n = 0, so assume 

ak = k!aO+1 for 0 < k < n. Then 
n 

an+1= E k$k!ak?1(n-k)!an =kn = !a"+ =(n+1)!a 
k-O k=O 

completing the proof. 

II. Solution by Western Maryland College Problems Group, Westminster, Maryland. 
We define bk =ak/k! and B(t) :== b tk. After dividing the original recur- 

rence by n!, we see that the sequence (bn) satisfies 
n 

(n + I)bn+l E bkbn=k 
k=O 

This leads to the differential equation B' [B( B(t)]2, B(O)= ao. Its unique power 
series solution is 

ao 
B(t) = - at - E a+ltk, 

0 k=o 

and the result follows. 
Also solved by Ed Adams, Robert A. Agnew, Reza Akhlaghi, Anchorage Math Solutions Group, P. J. 

Anderson (Canada), Michael H. Andreoli, Angelo State Problem Group, Marcia Ascher, Matt Baker 
(graduate student), Roy Barbara (Lebanon), J. C. Binz (Switzerland), Jean Bogaert (Belgium), Paul 
Bracken (Canada), Gerald D. Brown, Dale R. Buske, Stan Byrd, Sabin Cautis (Canada), Robin Chapman 
(United Kingdom), John Christopher, Haiwen Chu (high school student), C. Coker, Charles K. Cook, Paul 
Deiermann, Emeic Deutsch, Daniele Donini (Italy), Robert L. Doucette, Ragnar Dybvik (Norway), John 
D. Eggers, Roger B. Eggleton, David Flannery (Ireland), Matt Foss, Lorraine L. Foster, Marty Getz and 
Dixon Jones, Michael Golomb, Natalio H. Guersenzvaig (Argentina), James C. Hickman, Danrun Huang, 
Jeffrey J. Ibbotson, Hengli Jiao, D. Kipp Johnson, Hans Kappus (Switzerland), Parviz Khalili, James 
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Kiefer, Tom Kilkelly, Emil Knapp and Alan Murra (student), Harris Kwong, Kee-Wai Lau (China), Carl 
Libis, Norman F. Lindquist, Nick Lord (England), R. F. McCoart, Jr., Jack McCown, Mark McKinzie, 
Janice A. Meegan, Ioana Mihaila, Lucas Monzon, Kandasarny Muthuvel, William A. Newcomb, Thomas J. 
Osler, P. J. Pedler (Australia), Gao Peng (graduate student), R. Glenn Powers, Robert L. Raymond, 
Jorge Rodriguez, Kenneth Rogers, M. A. Roondog, Daniel M. Rosenblunr, Zeke Sarfa, Ed.ward Schme- 
ichel, Volkhard Schindler (Germany), Randy K. Schwartz, R. P. Sealy (Canada), Heinz-Jiirgen Seiffert 
(Germany), Alexander Shaumyan, Achilleas Sinefakopoulos (student, Greece), Nicholas C. Singer, W. R. 
Smythe, Albert Stadler (Switzerland), David R. Stone, Richard L. Syverson, TAMUK Problem Solvers, 
Gerald Thompson, R. S. Tiberio, William F. Trench, Trinity University Problem Solving Group, Michael 
Vowe (Switzerland), Joseph Wiener, Michael Woltermann, Yongzhi Yang, Kenneth L. Yocorn, Bilal 
Yurdakul (student, Turkey), and the proposer. Th-ere was one incomplete solution. 

Answers 
Solutions to the Quickies on page 316. 

A883. Choosing the origin to be at 0, let vi denote the unique vectors from 0 along 
the ith ray such that v1 + + v, = P. If the chosen points are xivi, then the 
restriction implies that 1/x1 + *' + 1/xn = 1. The volume of the simplex is 

xi ...* xndet (vl . .. vnl) /n! . 

The arithmetic-geometric mean inequality implies the volume is minimized when 

XI = .. = Xn =n , 

so that P is the centroid of the (n - 1)-simplex formed by the n chosen points. 

A884 I. The number of ordered trees with k edges in which only the root of the 
tree has more than one child is 2k-1 - 1, the number of ordered partitions of k into 
at least two parts. Then the required number is En__(2k-1-1) = 2n - n-1. 

II. Provided by the Editors. Suppose this one special node has k children, 2 < k < n. 
Then we must distribute the remaining n - k vertices among the ancestors of this 
special node and the lines of descent of its k children. In other words, we must place 

n-k balls in k + 1 boxes. There are (n) ways to do this, so the number we seek is 

22 s k 

(The nlumbers 2" - 1- n are sometimes called Eulerian numbers.) 

Correction 
1525, June 1998. Dennis P. Walsh was inadvertently omitted from the list of solvers. 
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 REVI EWS

 PAUL J. CAMPBELL, editor
 Beloit College

 1997-98: Universitat Augsburg,

 Germany

 Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for
 this section to call attention to interesting mathematical exposition that occurs outside the

 mainstream of mathematics literature. Readers are invited to suggest items for review to

 the editors.

 Singh, Simon (director). The Proof. Mathematics' Holy Grail: Proving Fermat's Last Theo-
 rem. Film, color, 60 min., 1996; $19.95 from http: //www. pbs. org/wgbh/shop/novavideo.

 html . Transcript and teacher's guide at http: //www.pbs. org/wgbh/nova/proof

 This film conveys extremely well the tension, excitement, and emotional ups and downs

 of the mathematical proof that was Andrew Wiles's dream since age 10. Interviews with

 colleagues at Princeton, Berkeley, and Cambridge are interspersed with interviews with

 Wiles, including a teary-eyed scene where he notes that nothing that he will ever do again
 will be so important. Are viewers sober or do they laugh at Barry Mazur's remark, "You

 may never have heard of elliptic curves but they're extremely important"? Surely Shimura's

 observation "I found out that it was very difficult to make good mistakes" elicits smiles.

 I wish the film identified the speakers at each appearance; and some computer graphics

 and the lyrics "One way or another" appear too often. Viewers will enjoy the contrast

 between Wiles's messy and chaotic "public" desk at his office and the stern simplicity

 of his attic home study, the latter reflecting his singular purpose working there on FLT.

 Some mathematicians will cheer, and others deplore, his remark, "I never use a computer."

 (Thanks to Juirgen Ritter of Universitait Augsburg for loaning me his copy.)

 Aronofsky, Darren, 7r. Film, B&W, 1998. Distributed by Artisan Entertainment. A peep
 into the pi perplex. New York Times (5 July 1998) Style Section, 3. Berardinelli, James.
 Darren Aronofsky's piece of the 7r, ReelViews (7 July 1998) (http: //movie-reviews.
 colossus.net/comment/070798.html). Holden, Stephen, "Pi": Living life by the numbers
 can give a guy a headache. New York Times (10 July 1998) E18 (http://www.nytimes.
 com/library/film/071098pi-film-review.html). O'Sullivan, Michael, Darren Aronof-
 sky: "Pi" in the Sky, Washington Post (26 July 1998) Gi, http: //www. washingtonpost.
 com/wp-srv/Wplate/1998-07/26/070I-072698-idx.html. Blatner, David, The Joy of Pi,
 Walker & Co., 1997, $18. ISBN 0-802713327. Berggren, Lennart, Jonathan Borwein, and
 Peter Borwein (eds), Pi: A Source Book, Springer-Verlag, 1997; 736 pp, $59.95. ISBN
 0-387-949240.

 Pi is having its fifteen minutes of fame. Now, coming to a theater near you: 7r, the movie!
 New Yorkers have already seen the symbol 7r on sidewalks all over the city, done as a
 promotion for this thriller movie made for under $100,000. A mathematician figures out
 how to predict the stock market and is pursued by a brokerage house (who want to cash
 in) and by a rabbi (who wants him to decode the secret name of God). The film won the
 Directing Award at the Sundance Film Festival. The schedule of venues where the film will
 play is at http: //www. pithemovie . com/theat . html . (I haven't seen the film.) Meanwhile,
 you can be the first in your department to wear the new fragrance Pi, due out from Parfums
 Givenchy this fall and billed as "a salute to the sex appeal of intelligence."
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 Hill, Theodore P., The first digit phenomenon, American Scientist 86 (4) (July-August

 1998) 358-363. Browne, Malcolm W., Following Benford's law, or looking out for No. 1,

 New York Times (4 August 1998) F4. Peterson, Ivars, First digits, http://www.maa.org/

 mathland/mathtrek_6_29_98.html.

 Benford's "law" is that the leading digit of elements of many data sets is d with frequency

 log10(l + 1/d) for d = 1, ... , 9. In particular, the frequency of a leading 1 is log1o 2 - .3.
 Despite the name, Benford's law was known to Simon Newcomb in 1881, who observed

 greater wear on pages of logarithm tables for smaller leading digits. Benford's law, which

 is scale-invariant, is named after an engineer at General Electric who verified it empirically

 for many data sets. Nonconformance of data to Benford's law has been used to detect fraud

 in accounting and tax data, as well as errors in computer programs.

 Browne, Malcolm W., Scruffy is badge of pride, but some physicists long for cool, New York

 Times (21 July 1998), http://www.nytimes.com/library/national/science/072198sci-

 essay.html.

 Can you spot mathematicians, on the plane to a national convention or walking around

 there, from how they dress? A letter by Jeremy Levy (University of Pittsburgh) in Physics

 Today (July 1998) chides physicists for their shabby look and suggests a connection with

 dropping enrollments in physics. He claims that physicists can't educate a clothes-conscious

 public about the importance and fascination of basic research without looking "cool." Levy

 also deplores a shortage at physics meetings of Internet facilities, laser pointers (I find it

 distracting how they jiggle all over), computer projection displays, and other up-to-date
 accoutrements: "We look and act like losers." Of course, he's talking just about physicists,

 not mathematicians.

 Kolata, Gina, A mystery unraveled, twice, New York Times (14 April 1998) F1, F8. Peter-

 son, Ivars, Cracking a medieval code, http://www.maa. org/mathland/mathtrek_5_4-98.
 html . Reeds, James A., Solved: The ciphers in Book III of Trithemius's Steganograph-

 ica (26 March 1998), http://www.research.att.com/Preeds/, to appear in Cryptologia.
 Ernst, Thomas, SchwarzweiBe Magie. Der Schliissel zum dritten Buch der Steganographia

 des Trithemius, Daphnis 25 (1996) (1); also published as a book by Editions Rodopi, ISBN
 9051839855.

 Johannes Trithemius (1462-1516) was a German abbot who dabbled in what was in his
 time considered an occult subject: cryptography. He was the author of the first several

 books on the subject, which were devoted mainly to steganography ("hidden writing"),
 the concealment of a secret message as a subsequence of letters in an innocent-appearing

 cover letter. (Trithemius, however, talked in terms of incantations and invoking spirits,
 and concealed his messages in long strings of demonic-sounding names-which led to the
 Roman Catholic Church placing his books on its list of forbidden books.) His incomplete
 third book, however, featured three-digit numbers ("astronomical data") and he did not
 publish a key to decrypting them. The possibility that the contents were just demonology
 enhanced Trithemius's reputation as a magician. In fact, however, James A. Reeds (AT&T
 Labs) and Thomas Ernst (La Roche College, Pittsburgh) independently discovered that
 the book features numerical substitution ciphers with multiple numerical equivalents for
 each plaintext letter. The plaintext is disappointingly banal (no secrets of the universe).
 In 1676, W.E. Heidel, a lawyer who worked for the Archbishop of Mainz, claimed to have
 deciphered the book-but wrote about his discovery in his own cryptograms, which no one
 could decipher. Ernst cracked Heidel's cipher too: Heidel was indeed the first to decrypt
 the book. (Moral: If you make a discovery that is potentially interesting to the public,
 don't encrypt your paper about it, and be sure that your organization distributes a press
 release.)
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NEWS AND LETTERS 

Letters to the Editor 

Dear Editor: 

In the charming article "Functions with compact preimages of compact sets" 
in the December 1997 issue of Mathematics Magazine, two topology students and 
their instructor discuss functions from the real line into itself with the property that 
the preimage of every compact set is compact. They show that such a "preimage- 
compact" function need not be continuous, but its set of discontinuities must be a 
closed, nowhere dense set, and they give some examples to show that this disconti- 
nuity set can be rather large. 

A slight adaptation of the authors' introductory example shows that every closed, 
nowhere dense set F is the set of discontinuities of some preimage-compact function. 
Indeed, define a function f via f (x) = x if x E F and f (x) = x + dist(x, F)-1 when 
x V F. Evidently f is continuous on the complement of F and unbounded in a 
neighborhood of every point of F. Hence F is the set of discontinuities of f. Since 
F is closed, the restriction of f to F is preimage-compact. On the other hand, if 
x V F, then f (x) blows up when x approaches either F or infinity, and consequently 
the restriction of f to the complement of F is also preimage-compact. 

Incidentally, a real-valued function that is both continuous and preimage-compact 
is a special case of what is called a "proper mapping" in the terminology popularized 
by Bourbaki's General Topology. 

Harold Boas 
Texas A&M University 
College Station, Texas 77843-3368 

Dear Editor: 

The article "Trisection of angles, classical curves, and functional equations," in 
the June 1998 issue of Mathematics Magazine, contains a historical error on page 
186: The first full paragraph states that Dinostratus lived before Hippias. He lived 
after Hippias. The facts are: Hippias invented the trisectrix in order to trisect any 
angle, probably by about 430 BC. Dinostratus some 80 years later realized that the 
same curve could be used to square the circle, and hence renamed it the quadratrix 
(cf. Boyer, A History of Mathematics, 1968, page 106). 

Ernest Fandreyer 
Fitchburg State College 
Fitchburg, MA 01420-1930 
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 Carl B. Allendoerfer Awards - 1998

 The Carl B. Allendoerfer Awards, established in 1976, are made to authors of

 expository articles published in Mathematics Magazine. Carl B. Allendoerfer, a

 distinguished mathematician at the University of Washington, served as President

 of the Mathematical Association of America, 1959-60. This year's award was pre-

 sented at the July 1998 Mathfest, in Toronto. The citations follow.

 Dan Kalman, Robert Mena, and Shahriar Shahriari, "Variations on an
 Irrational Theme-Geometry, Dynamics, Algebra," Mathematics Maga-

 zine 70 (April 1997). To quote the authors of the paper, "If someone mentions

 irrational numbers, what do you think of?" Kalman, Mena, and Shahriari begin

 with the early history of irrational numbers-the Pythagoreans' discomfort with
 incommensurable line segments-but quickly turn to what is interesting and novel.

 A geometric argument for incommensurability based on infinite descent is used to

 motivate the use of matrix algebra to show the irrationality of the square root of two
 in dynamical terms. The use of dynamical systems enables the authors to present

 elegant proofs of some well-known results about the monic polynomials with in-
 teger coefficients (for example, the real roots are either integral or irrational) and

 to generalize these results to monic polynomials over an integral domain. It's all

 interesting, novel, beautifully written, and a pleasure to read.

 Biographical Notes Dan Kalman has been a member of the mathematics faculty

 at American University, Washington, DC, since 1993. Before that he worked for
 eight years in the aerospace industry, and taught at the University of Wisconsin,

 Green Bay. During the 1996-97 academic year, he served as an Associate Executive
 Director of the Mathematical Association of America. Kalman has a B.S. from

 Harvey Mudd College and a Ph.D. from the University of Wisconsin, Madison.

 Kalman was recognized by the MAA with a Polya Award in 1994 and a Trevor
 Evans Award in 1997. He has been a frequent contributor to all of the MAA jour-

 nals and is an Associate Editor for Mathematics Magazine. His book, Elementary
 Mathematical Models, has been published in the MAA's Classroom Resources se-
 ries. One of his mathematical interests is automatic differentiation, the subject of
 an invited address he presented at the January 1997 joint mathematics meetings in
 San Diego.

 Robert Mena has been at Long Beach State since 1988, after 15 years at the
 University of Wyoming. His favorite courses include combinatorics, number theory,
 statistics, and history of mathematics.

 Shahriar Shahriari has been teaching mathematics at Pomona College since 1989.
 He received a B.A. (with high honors) from Oberlin College in 1977, and a Ph.D.
 from the University of Wisconsin-Madison in 1986. His thesis advisor was I. Martin
 Isaacs, and his area of research was representation theory of finite groups. Shahri-
 ari's current research interest is in the combinatorics of finite sets.

 Among the course Shahriari teaches at Pomona is an alternative to second semester
 Calculus in which calculus topics are taught in the context of number theory, and
 the students develop all the material through solving problems. He also teaches a
 combinatorics class, which is "writing intensive." In addition to the usual homework
 assignments, the students work on "labs" in a collaborative learning environment
 and write two expository papers.
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A Web-Searchable Database for Mathematics Magazine 

We are happy to inform readers of the Magazine's useful new Web-searchable 
database of Articles, Notes, Proofs Without Words, and more. The database can 
be found through MAA Online, at 

http://www.maa.org 

(click on Journals and then on Mathematics Magazine), or directly from its "home" 
at Harvey Mudd College, at 

http://www.math.hmc.edu/MathMag/ 

The database currently contains information going back to 1974. We plan in the 
near future to extend the database back to the Magazine's inception, in 1927. The 
database contains the title, author, and first paragraph (and, in many cases, author's 
summary) of almost every Article, Note, and Proof Without Words published in 
the Magazine since 1974. An easy-to-use search engine allows users to search for 
specific lists of records, or to browse the full contents of any single issue. 

The database and the search page were created by Harvey Mudd College math- 
ematics students as part of Harvey Mudd's Undergraduate Math Forum, run by 
Professor Arthur Benjamin in the 1997-1998 academic year. (Arthur Benjamin is 
also an Associate Editor of the Magazine.) 

The participating students are: Aaron Archer, Drew Bernat, Neil Burrell, Carrie 
Crum, Celeste Elton, Patri Forwalter-Friedman, Matthew Fluet, Ryan Gatti, Rif 
Hutchings, Jennifer Jack, Nathan Jakubiak, Brian Johnson, Christian Jones, Bill 
Kalahurka, John Larkin, Jeff Liebert, Naveen Mathew, Dominic Mazzoni, Andy 
Olson, Scott Robertson, David Rudel, Thara Salamone, Stacy Sanders, Itai Seggev, 
Marie Snipes, Jascha Swisher, Jennifer Weber, Bill Williams, and Andromeda Yel- 
ton. 

Each student was assigned a volume of Mathematics Magazine, and gave two pre- 
sentations based on his or her reading. Each student also entered the first paragraph 
of each note and article on a web page designed by Christian Jones. Dominic Maz- 
zoni designed the search engine, and Matthew Fluet has helped extend and upgrade 
the database. 

We thank all of these students for their useful efforts, and we hope that readers, 
prospective authors, and researchers will all find the database useful and inviting. 
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EXPLORE THE DEMANDS OF 
MATHEMATICAL REASONING IN THE 

COMPUTER-DRIVEN AGE. 

Why 

Quantitative Literacy 
for Tomorrow's America 
An invaluable array of "front line" perspectives on the 
kinds of quantitative skills students will need if they are 
to thrive in a rapidly changing society. 

Ramon Cortines, Special Advisor to the Secretary, 
U.S. Department of Education 

Indispensable resource for examining what could 
constitute productive participation in our democracy. 

Uri Treisman, Director, 
Charles A. Dana Center for Educational Innovation 

$19.95 (paperback) 005775, $29.95 (hardcover) 005031 

For credit card orders call: (800) 323-7155 
ask for dept. X36), or visit our Web Site at: The College Board 
http.//www.collegeboard.org Educational Excelence for All Students 

This content downloaded from 141.233.160.21 on Thu, 17 Dec 2015 21:16:07 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


m I Im I AL V V, I~ I [W., W1." I.?1I" L" I [S]re] M ANVA I U 4 ' [W." 

Writing in the ac 1 II 11 i 
Teaching and 
Leariningi of 

m Mathematics 
JOHN MEIER AND THOMAS RISHEL 

_ - Series: MAA Notes 

Writing in the Teaching and Learning of Mathematics 
discusses both how to create effective writing assign- 
ments for mathematics classes and why instructors 
ought to consider using such assignments. The book 
is more than just a user's manual for what some have 
termed "writing to learn mathematics;" it is an argu- 
ment for engaging students in a dialogue about the 
mathematics they are trying to learn. 

The first section, "First Steps," contains chapters 
addressing the nuts and bolts of how to design and 
evaluate writing assignments. The second section, 
"Listening to Others," introduces ideas such as 
audience, narrative, prewriting and process writing, 
which our colleagues in writing departments have 
found useful. Specific examples illustrate how these 

are important for writing in mathematics classes. 
After the third section, "Major Projects," the text 
concludes with "Narrating Mathematics," a section 
making explicit what is implicit in the rest of the text: 
writing, speaking and thinking are all intertwined. 
By asking good questions and critiquing students' 
manuscripts in an open, yet rigorous manner, 
instructors can get students at any level of ability 
and background to a deeper awareness of the beauty 
and power of mathematics. 

Catalog Code: NTE-48/JR 
114 pp., Paperbound, 1998 
ISBN 0-88385-158-X 
List: $18.95 MAA Member: $14.95 

| ~ ~~~~ ~ ~~ i 'l:ee, l .#4 1 1 7' l*f11*| 1*1 

Monday - Friday 8:30 am - 5:00 pm FAX (301) 206-9789 
or mail to: The Mathematical Association of America, PO Box 91112, Washington, DC 20090-1112 

Shipping and Handling: Postage and handling are charged as follows: USA orders (shipped via UPS): $2.95 for the first book, and $1.00 for each additional book. Canadian 
orders: $4.50 for the first book and $1.50 for each additional book. Canadian orders will be shipped within 10 days of receipt of order via the fastest available route. We do not 
ship via UPS into Canada unless the customer specially requests this service. Canadian customers who request UPS shipment will be billed an additional 7% of their total order. 
Overseas orders: $3.50 per item ordered for books sent surface mail. Airmail service is available at a rate of $7.00 per book. Foreign orders must be paid in US dollars through a 
US bank or through a New York clearinghouse. Credit Card orders are accepted for all customers. 
--------------------------------------------------------------__-------------__-------- 

QTY: CATALOG CODE PRICE AMOUNT 
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All orders must be prepaid with the excep- Shipping & handling 
Address tion of books purchasedfor resale by book- 
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